scholarly journals Sea Ice Drift and Arch Formation in the Robeson Channel Using Daily Coverage of Sentinel-1 SAR Data During the 2016–2017 Freezing Season

2020 ◽  
Author(s):  
Mohammed E. Shokr ◽  
Zihan Wang ◽  
Tingting Liu

Abstract. Robeson Channel (RC) is a narrow sea water passage between Greenland and Ellesmere Island in the Arctic. It is a pathway of sea ice from the central Arctic and out to the Baffin Bay. This paper uses a set of daily Synthetic Aperture Radar (SAR) images from Sentinel-1A/1B, acquired between September 2016 and April 2017, to study kinematics of individual ice floes as they approach then drift through the RC. Tracking of 39 selected floes was visually performed in the image sequence and their speed was calculated and linked to the reanalysis 10 m wind from ERA5. Results show that drift of ice floes is remarkably slow while in the compact ice regime upstream of the RC unless the floe is surrounded by water or thin ice. In this case the wind has more influence on the drift. On the other hand, ice floe drift is found to be about 4–5 times faster in the open drift regime within the RC and clearly influenced by wind. A linear trend is found between change in wind and change in ice drift speed components, both along the length of the channel. Case studies are presented to reveal the role of wind on ice floe drift in details. The study also addresses the development of the ice arch at the entry of the channel. It started development on 24 January and matured on 1 February 2017. Details of the formation process, using the sequential SAR images, are presented. The arch’s shape continued to adjust by rupturing ice pieces at locations of cracks under the influence of northerly wind (hence the contour keeps displacing northward). The study highlights the advantage of using the high-resolution daily SAR coverage in monitoring aspects of sea ice cover in narrow water passages where the ice cover is highly dynamic. The information will be particularly interesting for possible applications of SAR constellation systems.

2020 ◽  
Vol 14 (11) ◽  
pp. 3611-3627
Author(s):  
Mohammed E. Shokr ◽  
Zihan Wang ◽  
Tingting Liu

Abstract. The Robeson Channel is a narrow sea water passage between Greenland and Ellesmere Island in the Arctic. It is a pathway of sea ice from the central Arctic and out to Baffin Bay. In this study, we used a set of daily synthetic aperture radar (SAR) images from the Sentinel-1A/1B satellites, acquired between September 2016 and April 2017, to study the kinematics of individual ice floes as they approach and then drift through the Robeson Channel. The tracking of 39 selected ice floes was visually performed in the image sequence, and their speed was calculated and linked to the reanalysis 10 m wind from ERA5. The results show that the drift of ice floes is very slow in the compact ice regime upstream of the Robeson Channel, unless the ice floe is surrounded by water or thin ice. In this case, the wind has more influence on the drift. On the other hand, the ice floe drift is found to be about 4–5 times faster in the open-drift regime within the Robeson Channel and is clearly influenced by wind. A linear trend is found between the change in wind and the change in ice drift speed components, along the length of the channel. Case studies are presented to reveal the role of wind in ice floe drift. This paper also addresses the development of the ice arch at the entry of the Robeson Channel, which started development on 24 January and matured on 1 February 2017. Details of the development, obtained using the sequential SAR images, are presented. It is found that the arch's shape continued to adjust by rupturing ice pieces at the locations of cracks under the influence of the southward wind (and hence the contour kept displacing northward). The findings of this study highlight the advantage of using the high-resolution daily SAR coverage in monitoring aspects of sea ice cover in narrow water passages where the ice cover is highly dynamic. The information will be particularly interesting for the possible applications of SAR constellation systems.


2021 ◽  
Author(s):  
Angelina Cassianides ◽  
Camillie Lique ◽  
Anton Korosov

<p>In the global ocean, mesoscale eddies are routinely observed from satellite observation. In the Arctic Ocean, however, their observation is impeded by the presence of sea ice, although there is a growing recognition that eddy may be important for the evolution of the sea ice cover. In this talk, we will present a new method of surface ocean eddy detection based on their signature in sea ice vorticity retrieved from Synthetic Aperture Radar (SAR) images. A combination of Feature Tracking and Pattern Matching algorithm is used to compute the sea ice drift from pairs of SAR images. We will mostly focus on the case of one eddy in October 2017 in the marginal ice zone of the Canadian Basin, which was sampled by mooring observations, allowing a detailed description of its characteristics. Although the eddy could not be identified by visual inspection of the SAR images, its signature is revealed as a dipole anomaly in sea ice vorticity, which suggests that the eddy is a dipole composed of a cyclone and an anticyclone, with a horizontal scale of 80-100 km and persisted over a week. We will also discuss the relative contributions of the wind and the surface current to the sea ice vorticity. We anticipate that the robustness of our method will allow us to detect more eddies as more SAR observations become available in the future.</p>


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Ron Kwok ◽  
Shirley S. Pang ◽  
Sahra Kacimi

Understanding long-term changes in large-scale sea ice drift in the Southern Ocean is of considerable interest given its contribution to ice extent, to ice production in open waters, with associated dense water formation and heat flux to the atmosphere, and thus to the climate system. In this paper, we examine the trends and variability of this ice drift in a 34-year record (1982–2015) derived from satellite observations. Uncertainties in drift (~3 to 4 km day–1) were assessed with higher resolution observations. In a linear model, drift speeds were ~1.4% of the geostrophic wind from reanalyzed sea-level pressure, nearly 50% higher than that of the Arctic. This result suggests an ice cover in the Southern Ocean that is thinner, weaker, and less compact. Geostrophic winds explained all but ~40% of the variance in ice drift. Three spatially distinct drift patterns were shown to be controlled by the location and depth of atmospheric lows centered over the Amundsen, Riiser-Larsen, and Davis seas. Positively correlated changes in sea-level pressures at the three centers (up to 0.64) suggest correlated changes in the wind-driven drift patterns. Seasonal trends in ice edge are linked to trends in meridional winds and also to on-ice/off-ice trends in zonal winds, due to zonal asymmetry of the Antarctic ice cover. Sea ice area export at flux gates that parallel the 1000-m isobath were extended to cover the 34-year record. Interannual variability in ice export in the Ross and Weddell seas linked to the depth and location of the Amundsen Sea and Riiser-Larsen Sea lows to their east. Compared to shorter records, where there was a significant positive trend in Ross Sea ice area flux, the longer 34-year trends of outflow from both seas are now statistically insignificant.


2020 ◽  
Author(s):  
Valeria Selyuzhenok ◽  
Denis Demchev ◽  
Thomas Krumpen

<p>Landfast sea ice is a dominant sea ice feature of the Arctic coastal region. As a part of Arctic sea ice cover, landfast ice is an important part of coastal ecosystem, it provides functions as a climate regulator and platform for human activity. Recent changes in sea ice conditions in the Arctic have also affected landfast ice regime. At the same time, industrial interest in the Arctic shelf seas continue to increase. Knowledge on local landfast ice conditions are required to ensure safety of on ice operations and accurate forecasting.  In order to obtain a comprehensive information on landfast ice state we use a time series of wide swath SAR imagery.  An automatic sea ice tracking algorithm was applied to the sequential SAR images during the development stage of landfast ice cover. The analysis of resultant time series of sea ice drift allows to classify homogeneous sea ice drift fields and timing of their attachment to the landfast ice. In addition, the drift data allows to locate areas of formation of grounded sea ice accumulation called stamukha. This information сan be useful for local landfast ice stability assessment. The study is supported by the Russian Foundation for Basic Research (RFBR) grant 19-35-60033.</p>


2016 ◽  
Vol 10 (2) ◽  
pp. 585-595 ◽  
Author(s):  
Natalia Ivanova ◽  
Pierre Rampal ◽  
Sylvain Bouillon

Abstract. Leads within consolidated sea ice control heat exchange between the ocean and the atmosphere during winter, thus constituting an important climate parameter. These narrow elongated features occur when sea ice is fracturing under the action of wind and currents, reducing the local mechanical strength of the ice cover, which in turn impact the sea ice drift pattern. This creates a high demand for a high-quality lead fraction (LF) data set for sea ice model evaluation, initialization, and for the assimilation of such data in regional models. In this context, an available LF data set retrieved from satellite passive microwave observations (Advanced Microwave Scanning Radiometer – Earth Observing System, AMSR-E) is of great value, which has been providing pan-Arctic light- and cloud-independent daily coverage since 2002. In this study errors in this data set are quantified using accurate LF estimates retrieved from Synthetic Aperture Radar (SAR) images employing a threshold technique. A consistent overestimation of LF by a factor of 2–4 is found in the AMSR-E LF product. It is shown that a simple adjustment of the upper tie point used in the method to estimate the LF can reduce the pixel-wise error by a factor of 2 on average. Applying such an adjustment to the full data set may thus significantly increase the quality and value of the original data set.


2007 ◽  
Vol 4 (1) ◽  
pp. 107-128
Author(s):  
A. Chmel ◽  
V. N. Smirnov ◽  
L. V. Panov

Abstract. A study of the sea-ice dynamics in the periods of time prior to and during the cycles of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The fractal geometry of the ice-sheets limited by leads and ridges was assessed using the satellite images, while the data on the correlated sea-ice motion were obtained in the research stations "North Pole 32" and "North Pole 33" established on the ice pack. The revealed decrease of the fractal dimension as a result of large-scale fragmentation is consistent with the localization of the fracture process (leads propagation). At the same time, the scaling properties of the distribution of amplitudes of ice-fields accelerations were insensitive to the event of sea-ice fragmentation. The temporal distribution of the accelerations was scale-invariant during "quiet" periods of sea-ice drift but disordered in the period of mechanical perturbation. The period of decorrelated (in time) ice-field motion during the important fracture event was interpreted as an inter-level transition in the hierarchic dynamical system. The mechanism of the long-range correlations in the sea-ice cover, including the fracture process, is suggested to be in relation with the self-organized oscillation dynamics inherent in the ice pack.


Ocean Science ◽  
2007 ◽  
Vol 3 (2) ◽  
pp. 291-298 ◽  
Author(s):  
A. Chmel ◽  
V. N. Smirnov ◽  
L. V. Panov

Abstract. A study of the sea-ice dynamics in the periods of time prior to and during the cycles of basin-wide fragmentation of the ice cover in the Arctic Ocean is presented. The fractal geometry of the ice-sheets limited by leads and ridges was assessed using the satellite images, while the data on the correlated sea-ice motion were obtained in the research stations "North Pole 32" and "North Pole 33" established on the ice pack. The revealed decrease of the fractal dimension as a result of large-scale fragmentation is consistent with the localization of the fracture process (leads propagation). At the same time, the scaling properties of the distribution of amplitudes of ice-fields accelerations were insensitive to the event of sea-ice fragmentation. The temporal distribution of the accelerations was scale-invariant during "quiet" periods of sea-ice drift but disordered in the period of mechanical perturbation. The period of decorrelated (in time) ice-field motion during the important fracture event was interpreted as an inter-level transition in the hierarchic dynamical system. The mechanism of the long-range correlations in the sea-ice cover, including the fracture process, is suggested to be in relation with the self-organized oscillation dynamics inherent in the ice pack.


Ocean Science ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. 473-483 ◽  
Author(s):  
J. Karvonen

Abstract. An algorithm for computing ice drift from pairs of synthetic aperture radar (SAR) images covering a common area has been developed at FMI. The algorithm has been developed based on the C-band SAR data over the Baltic Sea. It is based on phase correlation in two scales (coarse and fine) with some additional constraints. The algorithm has been running operationally in the Baltic Sea from the beginning of 2011, using Radarsat-1 ScanSAR wide mode and Envisat ASAR wide swath mode data. The resulting ice drift fields are publicly available as part of the MyOcean EC project. The SAR-based ice drift vectors have been compared to the drift vectors from drifter buoys in the Baltic Sea during the first operational season, and also these validation results are shown in this paper. Also some navigationally useful sea ice quantities, which can be derived from ice drift vector fields, are presented.


2016 ◽  
Vol 10 (3) ◽  
pp. 1055-1073 ◽  
Author(s):  
Pierre Rampal ◽  
Sylvain Bouillon ◽  
Einar Ólason ◽  
Mathieu Morlighem

Abstract. The Arctic sea ice cover has changed drastically over the last decades. Associated with these changes is a shift in dynamical regime seen by an increase of extreme fracturing events and an acceleration of sea ice drift. The highly non-linear dynamical response of sea ice to external forcing makes modelling these changes and the future evolution of Arctic sea ice a challenge for current models. It is, however, increasingly important that this challenge be better met, both because of the important role of sea ice in the climate system and because of the steady increase of industrial operations in the Arctic. In this paper we present a new dynamical/thermodynamical sea ice model called neXtSIM that is designed to address this challenge. neXtSIM is a continuous and fully Lagrangian model, whose momentum equation is discretised with the finite-element method. In this model, sea ice physics are driven by the combination of two core components: a model for sea ice dynamics built on a mechanical framework using an elasto-brittle rheology, and a model for sea ice thermodynamics providing damage healing for the mechanical framework. The evaluation of the model performance for the Arctic is presented for the period September 2007 to October 2008 and shows that observed multi-scale statistical properties of sea ice drift and deformation are well captured as well as the seasonal cycles of ice volume, area, and extent. These results show that neXtSIM is an appropriate tool for simulating sea ice over a wide range of spatial and temporal scales.


2011 ◽  
Vol 52 (57) ◽  
pp. 311-317 ◽  
Author(s):  
Thomas Hollands ◽  
Wolfgang Dierking

AbstractSea-ice drift fields were obtained from sequences of synthetic aperture radar (SAR) images using a method based on pattern recognition. the accuracy of the method was estimated for two image products of the Envisat Advanced SAR (ASAR) with 25 m and 150 m pixel size. For data from the winter season it was found that 99% of the south–north and west–east components of the determined displacement vector are within ±3–5 pixels of a manually derived reference dataset, independent of the image resolution. For an image pair with 25 m resolution acquired during summer, the corresponding value is 12 pixels. Using the same resolution cell dimensions for the displacement fields in both image types, the estimated displacement components differed by 150–300 m. the use of different texture parameters for predicting the performance of the algorithm dependent on ice conditions and image characteristics was studied. It was found that high entropy values indicate a good performance.


Sign in / Sign up

Export Citation Format

Share Document