scholarly journals Development of a Diffuse Reflectance Probe for In Situ Measurement of Inherent Optical Properties in Sea Ice

2021 ◽  
Author(s):  
Christophe Perron ◽  
Christian Katlein ◽  
Simon Lambert-Girard ◽  
Edouard Leymarie ◽  
Louis-Philippe Guinard ◽  
...  

Abstract. Detailed characterization of the spatially and temporally varying inherent optical properties (IOPs) of sea ice is necessary to better predict energy and mass balances, as well as ice-associated primary production. Here we present the development of an active optical probe to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. The probe is derived from the diffuse reflectance method used to measure the IOPs of human tissues. The instrument emits light into the ice by the use of optical fibre. Backscattered light is measured at multiple distances away from the source using several receiving fibres. Comparison to a Monte Carlo simulated lookup table allows to retrieve the absorption coefficient, the reduced scattering coefficient and a phase function similarity parameter γ, introduced by Bevilacqua and Depeursinge (1999), depending on the two first moments of the Legendre polynomials, allowing to analyze the backscattered light not satisfying the diffusion regime. Monte Carlo simulations showed that the depth cumulating 95% of the signal is between 40±2 mm and 270±20 mm depending on the source-detector distance and on the ice scattering properties. The magnitude of the instrument validation error on the reduced scattering coefficient ranged from 0.07% for the most scattering medium to 35% for the less scattering medium over the two orders of magnitude we validated. Vertical profiles of the reduced scattering coefficient were obtained with decimeter resolution on first-year Arctic interior sea ice on Baffin Island in early spring 2019. We measured values of up to 7.1 m−1 for the uppermost layer of interior ice and down to 0.15±0.05 m−1 for the bottommost layer. These values are in the range of polar interior sea ice measurements published by other authors. The inversion of the reduced scattering coefficient at this scale was strongly dependent of γ, highlighting the need to define the higher moments of the phase function. This novel developed probe provides a fast and reliable means for measurement of scattering into sea ice.

2021 ◽  
Vol 15 (9) ◽  
pp. 4483-4500
Author(s):  
Christophe Perron ◽  
Christian Katlein ◽  
Simon Lambert-Girard ◽  
Edouard Leymarie ◽  
Louis-Philippe Guinard ◽  
...  

Abstract. Detailed characterization of the spatially and temporally varying inherent optical properties (IOPs) of sea ice is necessary to better predict energy and mass balances, as well as ice-associated primary production. Here we present the development of an active optical probe to measure IOPs of a small volume of sea ice (dm3) in situ and non-destructively. The probe is derived from the diffuse reflectance method used to measure the IOPs of human tissues. The instrument emits light into the ice by the use of an optical fibre. Backscattered light is measured at multiple distances away from the source using several receiving fibres. Comparison to a Monte Carlo simulated lookup table allows, in theory, retrieval of the absorption coefficient, the reduced scattering coefficient and a phase function similarity parameter γ, introduced by Bevilacqua and Depeursinge (1999). γ depends on the two first moments of the Legendre polynomials, allowing the analysis of the backscattered light not satisfying the diffusion regime. The depth reached into the medium by detected photons was estimated using Monte Carlo simulations: the maximum depth reached by 95 % of the detected photons was between 40±2 and 270±20 mm depending on the source–detector distance and on the ice scattering properties. The magnitude of the instrument validation error on the reduced scattering coefficient ranged from 0.07 % for the most scattering medium to 35 % for the less scattering medium over the 2 orders of magnitude we validated. Fixing the absorption coefficient and γ, which proved difficult to measure, vertical profiles of the reduced scattering coefficient were obtained with decimetre resolution on first-year Arctic interior sea ice on Baffin Island in early spring 2019. We measured values of up to 7.1 m−1 for the uppermost layer of interior ice and down to 0.15±0.05 m−1 for the bottommost layer. These values are in the range of polar interior sea ice measurements published by other authors. The inversion of the reduced scattering coefficient at this scale was strongly dependent on the value of γ, highlighting the need to define the higher moments of the phase function. This newly developed probe provides a fast and reliable means for measurement of scattering in sea ice.


2015 ◽  
Vol 12 (4) ◽  
pp. 1893-1912 ◽  
Author(s):  
J. D. Pravin ◽  
P. Shanmugam ◽  
Y.-H. Ahn

Abstract. A semi-analytical model for predicting diffuse reflectance of coastal and oceanic waters is developed based on the water-column optical properties and illumination conditions. Diffuse reflectance (R) is an apparent optical property that is related to the Gordon's parameter (bb/(a+bb)) through a proportionality factor "f". The conventional assumption of "f" as a constant (0.33) yields large errors in case of turbid and productive coastal waters and a predictive model based on this assumption is generally restricted to open-ocean waters (low chlorophyll case). In this paper, we have sorted the dependent factors that influence "f" values in the water column. Here, the parameter "f" is modeled as a function of wavelength, depth, inherent optical properties (IOPs) and illumination conditions. This work eliminates the spectral constants (KChl and KSS) associated with our previous model and constrains the present model to be solely dependent on the IOPs and illumination conditions. Data used for parameterization and validation are obtained from in situ measurements in different waters within coastal environments. Validation shows good agreement between the model R and in situ R values with the overall mean relative error of less than a few percent. The model is valid for a wide range waters within coastal and open-ocean environments.


2006 ◽  
Vol 39 (18) ◽  
pp. 41-46
Author(s):  
Emilie Péry ◽  
Walter C.P.M. Blondel ◽  
Cédric Thomas ◽  
Jacques Didelon ◽  
François Guillemin

2018 ◽  
Vol 12 (6) ◽  
pp. 1921-1937 ◽  
Author(s):  
Aleksey Malinka ◽  
Eleonora Zege ◽  
Larysa Istomina ◽  
Georg Heygster ◽  
Gunnar Spreen ◽  
...  

Abstract. Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere–ice–ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel–Kramers–Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document