scholarly journals Reflective properties of melt ponds on sea ice

2018 ◽  
Vol 12 (6) ◽  
pp. 1921-1937 ◽  
Author(s):  
Aleksey Malinka ◽  
Eleonora Zege ◽  
Larysa Istomina ◽  
Georg Heygster ◽  
Gunnar Spreen ◽  
...  

Abstract. Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere–ice–ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel–Kramers–Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo spectra were fitted with the modeled spectra by varying the pond parameters (z, H, and σt). The coincidence of the measured and fitted spectra demonstrates good performance of the model: it is able to reproduce the albedo spectrum in the visible range with RMSD that does not exceed 1.5 % for a wide variety of melt pond types observed in the Arctic.

2015 ◽  
Vol 9 (1) ◽  
pp. 255-268 ◽  
Author(s):  
D. V. Divine ◽  
M. A. Granskog ◽  
S. R. Hudson ◽  
C. A. Pedersen ◽  
T. I. Karlsen ◽  
...  

Abstract. The paper presents a case study of the regional (≈150 km) morphological and optical properties of a relatively thin, 70–90 cm modal thickness, first-year Arctic sea ice pack in an advanced stage of melt. The study combines in situ broadband albedo measurements representative of the four main surface types (bare ice, dark melt ponds, bright melt ponds and open water) and images acquired by a helicopter-borne camera system during ice-survey flights. The data were collected during the 8-day ICE12 drift experiment carried out by the Norwegian Polar Institute in the Arctic, north of Svalbard at 82.3° N, from 26 July to 3 August 2012. A set of > 10 000 classified images covering about 28 km2 revealed a homogeneous melt across the study area with melt-pond coverage of ≈ 0.29 and open-water fraction of ≈ 0.11. A decrease in pond fractions observed in the 30 km marginal ice zone (MIZ) occurred in parallel with an increase in open-water coverage. The moving block bootstrap technique applied to sequences of classified sea-ice images and albedo of the four surface types yielded a regional albedo estimate of 0.37 (0.35; 0.40) and regional sea-ice albedo of 0.44 (0.42; 0.46). Random sampling from the set of classified images allowed assessment of the aggregate scale of at least 0.7 km2 for the study area. For the current setup configuration it implies a minimum set of 300 images to process in order to gain adequate statistics on the state of the ice cover. Variance analysis also emphasized the importance of longer series of in situ albedo measurements conducted for each surface type when performing regional upscaling. The uncertainty in the mean estimates of surface type albedo from in situ measurements contributed up to 95% of the variance of the estimated regional albedo, with the remaining variance resulting from the spatial inhomogeneity of sea-ice cover.


2014 ◽  
Vol 11 (5) ◽  
pp. 7485-7519 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting sea ice, melt ponds and the underlying seawater associated with measurement of CO2 fluxes across first year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase of the ice temperature and the subsequent decrease of the bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond pCO2 is low (36 μatm). The percolation of this low pCO2 melt water into the sea ice matrix dilutes the brine resulting in a strong decrease of the in situ brine pCO2 (to 20 μatm). As melt ponds reach equilibrium with the atmosphere, their in situ pCO2 increase (up to 380 μatm) and the percolation of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2015 ◽  
Vol 12 (6) ◽  
pp. 2047-2061 ◽  
Author(s):  
N.-X. Geilfus ◽  
R. J. Galley ◽  
O. Crabeck ◽  
T. Papakyriakou ◽  
J. Landy ◽  
...  

Abstract. Melt pond formation is a common feature of spring and summer Arctic sea ice, but the role and impact of sea ice melt and pond formation on both the direction and size of CO2 fluxes between air and sea is still unknown. Here we report on the CO2–carbonate chemistry of melting sea ice, melt ponds and the underlying seawater as well as CO2 fluxes at the surface of first-year landfast sea ice in the Resolute Passage, Nunavut, in June 2012. Early in the melt season, the increase in ice temperature and the subsequent decrease in bulk ice salinity promote a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. As sea ice melt progresses, melt ponds form, mainly from melted snow, leading to a low in situ melt pond pCO2 (36 μatm). The percolation of this low salinity and low pCO2 meltwater into the sea ice matrix decreased the brine salinity, TA and TCO2, and lowered the in situ brine pCO2 (to 20 μatm). This initial low in situ pCO2 observed in brine and melt ponds results in air–ice CO2 fluxes ranging between −0.04 and −5.4 mmol m−2 day−1 (negative sign for fluxes from the atmosphere into the ocean). As melt ponds strive to reach pCO2 equilibrium with the atmosphere, their in situ pCO2 increases (up to 380 μatm) with time and the percolation of this relatively high concentration pCO2 meltwater increases the in situ brine pCO2 within the sea ice matrix as the melt season progresses. As the melt pond pCO2 increases, the uptake of atmospheric CO2 becomes less significant. However, since melt ponds are continuously supplied by meltwater, their in situ pCO2 remains undersaturated with respect to the atmosphere, promoting a continuous but moderate uptake of CO2 (~ −1 mmol m−2 day−1) into the ocean. Considering the Arctic seasonal sea ice extent during the melt period (90 days), we estimate an uptake of atmospheric CO2 of −10.4 Tg of C yr−1. This represents an additional uptake of CO2 associated with Arctic sea ice that needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget.


2015 ◽  
Vol 9 (4) ◽  
pp. 1551-1566 ◽  
Author(s):  
L. Istomina ◽  
G. Heygster ◽  
M. Huntemann ◽  
P. Schwarz ◽  
G. Birnbaum ◽  
...  

Abstract. The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences for the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo from Medium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, shipborne and in situ campaign data. The results show the best correlation for landfast and multiyear ice of high ice concentrations. For broadband albedo, R2 is equal to 0.85, with the RMS (root mean square) being equal to 0.068; for the melt pond fraction, R2 is equal to 0.36, with the RMS being equal to 0.065. The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to ice drift and challenging for the retrieval surface conditions. Combining all aerial observations gives a mean albedo RMS of 0.089 and a mean melt pond fraction RMS of 0.22. The in situ melt pond fraction correlation is R2 = 0.52 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the Antarctic Sea Ice Processes and Climate (ASPeCt) protocol, which may contribute to the discrepancy between the satellite value and the observed value: mean R2 = 0.044, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data.


2014 ◽  
Vol 8 (1) ◽  
pp. 845-885 ◽  
Author(s):  
R. K. Scharien ◽  
K. Hochheim ◽  
J. Landy ◽  
D. G. Barber

Abstract. Observed changes in the Arctic have motivated efforts to understand and model its components as an integrated and adaptive system at increasingly finer scales. Sea ice melt pond fraction, an important summer sea ice component affecting surface albedo and light transmittance across the ocean-sea ice–atmosphere interface, is inadequately parameterized in models due to a lack of large scale observations. In this paper, results from a multi-scale remote sensing program dedicated to the retrieval of pond fraction from satellite C-band synthetic aperture radar (SAR) are detailed. The study was conducted on first-year sea (FY) ice in the Canadian Arctic Archipelago during the summer melt period in June 2012. Approaches to retrieve the subscale FY ice pond fraction from mixed pixels in RADARSAT-2 imagery, using in situ, surface scattering theory, and image data are assessed. Each algorithm exploits the dominant effect of high dielectric free-water ponds on the VV/HH polarisation ratio (PR) at moderate to high incidence angles (about 40° and above). Algorithms are applied to four images corresponding to discrete stages of the seasonal pond evolutionary cycle, and model performance is assessed using coincident pond fraction measurements from partitioned aerial photos. A RMSE of 0.07, across a pond fraction range of 0.10 to 0.70, is achieved during intermediate and late seasonal stages. Weak model performance is attributed to wet snow (pond formation) and synoptically driven pond freezing events (all stages), though PR has utility for identification of these events when considered in time series context. Results demonstrate the potential of wide-swath, dual-polarisation, SAR for large-scale observations of pond fraction with temporal frequency suitable for process-scale studies and improvements to model parameterizations.


2020 ◽  
Vol 12 (16) ◽  
pp. 2623 ◽  
Author(s):  
Marcel König ◽  
Gerit Birnbaum ◽  
Natascha Oppelt

Hyperspectral remote-sensing instruments on unmanned aerial vehicles (UAVs), aircraft and satellites offer new opportunities for sea ice observations. We present the first study using airborne hyperspectral imagery of Arctic sea ice and evaluate two atmospheric correction approaches (ATCOR-4 (Atmospheric and Topographic Correction version 4; v7.0.0) and empirical line calibration). We apply an existing, field data-based model to derive the depth of melt ponds, to airborne hyperspectral AisaEAGLE imagery and validate results with in situ measurements. ATCOR-4 results roughly match the shape of field spectra but overestimate reflectance resulting in high root-mean-square error (RMSE) (between 0.08 and 0.16). Noisy reflectance spectra may be attributed to the low flight altitude of 200 ft and Arctic atmospheric conditions. Empirical line calibration resulted in smooth, accurate spectra (RMSE < 0.05) that enabled the assessment of melt pond bathymetry. Measured and modeled pond bathymetry are highly correlated (r = 0.86) and accurate (RMSE = 4.04 cm), and the model explains a large portion of the variability (R2 = 0.74). We conclude that an accurate assessment of melt pond bathymetry using airborne hyperspectral data is possible subject to accurate atmospheric correction. Furthermore, we see the necessity to improve existing approaches with Arctic-specific atmospheric profiles and aerosol models and/or by using multiple reference targets on the ground.


2016 ◽  
Author(s):  
Predrag Popović ◽  
Dorian S. Abbot

Abstract. Late in the melt season, sea ice floes in the Arctic have been observed to exhibit a large range in melt pond coverage, from heavily ponded to almost pond free. Some of these observations are consistent with a bimodal distribution in pond coverage with few intermediately ponded ice floes. We present a model for the evolution of melt ponds on sea ice floes in which conservation of hydrostatic balance in response to melt creates an unstable fixed point in pond coverage: if the initial pond coverage is below a threshold value the floe becomes unponded, and if it is above the threshold the floe becomes heavily ponded. Whether the fixed point is physically realistic depends on the differential melting rates of different points on the ice: ice at the perimeter of ponds needs to melt sufficiently slower than bare ice on average. Interestingly, this shows that the melting behavior of the narrow boundary between bare ice and melt ponds can govern the melt pond evolution of the entire ice floe. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help us improve large-scale model parameterizations and sea ice forecasts in a warming climate.


2014 ◽  
Vol 8 (5) ◽  
pp. 5227-5292 ◽  
Author(s):  
L. Istomina ◽  
G. Heygster ◽  
M. Huntemann ◽  
P. Schwarz ◽  
G. Birnbaum ◽  
...  

Abstract. The presence of melt ponds on the Arctic sea ice strongly affects the energy balance of the Arctic Ocean in summer. It affects albedo as well as transmittance through the sea ice, which has consequences on the heat balance and mass balance of sea ice. An algorithm to retrieve melt pond fraction and sea ice albedo (Zege et al., 2014) from the MEdium Resolution Imaging Spectrometer (MERIS) data is validated against aerial, ship borne and in situ campaign data. The result show the best correlation for landfast and multiyear ice of high ice concentrations (albedo: R = 0.92, RMS = 0.068, melt pond fraction: R = 0.6, RMS = 0.065). The correlation for lower ice concentrations, subpixel ice floes, blue ice and wet ice is lower due to complicated surface conditions and ice drift. Combining all aerial observations gives a mean albedo RMS equal to 0.089 and a mean melt pond fraction RMS equal to 0.22. The in situ melt pond fraction correlation is R = 0.72 with an RMS = 0.14. Ship cruise data might be affected by documentation of varying accuracy within the ASPeCT protocol, which is the reason for discrepancy between the satellite value and observed value: mean R = 0.21, mean RMS = 0.16. An additional dynamic spatial cloud filter for MERIS over snow and ice has been developed to assist with the validation on swath data. The case studies and trend analysis for the whole MERIS period (2002–2011) show pronounced and reasonable spatial features of melt pond fractions and sea ice albedo. The most prominent feature is the melt onset shifting towards spring (starting already in weeks 3 and 4 of June) within the multiyear ice area, north to the Queen Elizabeth Islands and North Greenland.


2015 ◽  
Vol 9 (4) ◽  
pp. 1567-1578 ◽  
Author(s):  
L. Istomina ◽  
G. Heygster ◽  
M. Huntemann ◽  
H. Marks ◽  
C. Melsheimer ◽  
...  

Abstract. The spatial and temporal dynamics of melt ponds and sea ice albedo contain information on the current state and the trend of the climate of the Arctic region. This publication presents a study on melt pond fraction (MPF) and sea ice albedo spatial and temporal dynamics obtained with the Melt Pond Detection (MPD) retrieval scheme for the Medium Resolution Imaging Spectrometer (MERIS) satellite data. This study compares sea ice albedo and MPF to surface air temperature reanalysis data, compares MPF retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS), and examines albedo and MPF trends. Weekly averages of MPF for 2007 and 2011 showed different MPF dynamics while summer sea ice minimum was similar for both years. The gridded MPF and albedo products compare well to independent reanalysis temperature data and show melt onset when the temperature gets above zero; however MPD shows an offset at low MPFs of about 10 % most probably due to unscreened high clouds. Weekly averaged trends show pronounced dynamics of both, MPF and albedo: a negative MPF trend in the East Siberian Sea and a positive MPF trend around the Queen Elizabeth Islands. The negative MPF trend appears due to a change of the absolute MPF value in its peak, whereas the positive MPF trend is created by the earlier melt onset, with the peak MPF values unchanged. The MPF dynamics in the East Siberian Sea could indicate a temporal change of ice type prevailing in the region, as opposed to the Queen Elizabeth Islands, where MPF dynamics react to an earlier seasonal onset of melt.


2020 ◽  
Author(s):  
Jean Sterlin ◽  
Thierry Fichefet ◽  
François Massonnet ◽  
Olivier Lecomte ◽  
Martin Vancoppenolle

&lt;p&gt;Melt ponds appear during the Arctic summer on the sea ice cover when meltwater and liquid precipitation collect in the depressions of the ice surface. The albedo of the melt ponds is lower than that of surrounding ice and snow areas. Consequently, the melt ponds are an important factor for the ice-albedo feedback, a mechanism whereby a decrease in albedo results in greater absorption of solar radiation, further ice melt, and lower albedos&amp;#160;&lt;/p&gt;&lt;p&gt;To account for the effect of melt ponds on the climate, several numerical schemes have been introduced for Global Circulation Models. They can be classified into two groups. The first group makes use of an explicit relation to define the aspect ratio of the melt ponds. The scheme of Holland et al. (2012) uses a constant ratio of the melt pond depth to the fraction of sea ice covered by melt ponds. The second group relies on theoretical considerations to deduce the area and volume of the melt ponds. The scheme of Flocco et al. (2012) uses the ice thickness distribution to share the meltwater between the ice categories and determine the melt ponds characteristics.&lt;/p&gt;&lt;p&gt;Despite their complexity, current melt pond schemes fail to agree on the trends in melt pond fraction of sea ice area during the last decades. The disagreement casts doubts on the projected melt pond changes. It also raises questions on the definition of the physical processes governing the melt ponds in the schemes and their sensitivity to atmospheric surface conditions.&lt;/p&gt;&lt;p&gt;In this study, we aim at identifying 1) the conceptual difference of the aspect ratio definition in melt pond schemes; 2) the role of refreezing for melt ponds; 3) the impact of the uncertainties in the atmospheric reanalyses. To address these points, we have run the Louvain-la-Neuve Ice Model (LIM), part of the Nucleus for European Modelling of the Ocean (NEMO) version 3.6 along with two different atmospheric reanalyses as surface forcing sets. We used the reanalyses in association with Holland et al. (2012) and Flocco et al. (2012) melt pond schemes. We selected Holland et al. (2012) pond refreezing formulation for both schemes and tested two different threshold temperatures for refreezing.&amp;#160;&lt;/p&gt;&lt;p&gt;From the experiments, we describe the impact on Arctic sea ice and state the importance of including melt ponds in climate models. We attempt at disentangling the separate effects of the type of melt pond scheme, the refreezing mechanism, and the atmospheric surface forcing method, on the climate. We finally formulate a recommendation on the use of melt ponds in climate models.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document