scholarly journals Supplementary material to "Clouds drive differences in future surface melt over the Antarctic ice shelves"

Author(s):  
Christoph Kittel ◽  
Charles Amory ◽  
Stefan Hofer ◽  
Cécile Agosta ◽  
Nicolas C. Jourdain ◽  
...  
2020 ◽  
Author(s):  
Christoph Kittel ◽  
Charles Amory ◽  
Cécile Agosta ◽  
Nicolas C. Jourdain ◽  
Stefan Hofer ◽  
...  

2014 ◽  
Vol 8 (5) ◽  
pp. 1711-1723 ◽  
Author(s):  
S. R. M. Ligtenberg ◽  
P. Kuipers Munneke ◽  
M. R. van den Broeke

Abstract. A firn densification model (FDM) is used to assess spatial and temporal (1979–2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). A time-dependent version of the FDM is compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) of both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5–15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e., assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5% (or 16.7 Gt yr−1) with regard to the reconciled estimate over the period 1992–2011. The timing of the measurement is also important, as temporal FAC variations of 1–2 m are simulated within the 33 yr period (1979–2012). Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature, and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate, and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are, however, more than compensated for by increasing snowfall, leading to a 4–14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (−50 to −80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, the increase in precipitation results in a similar volume increase due to ice and air (both ~150 km3 yr−1 until 2100). Combined, this volume increase is equivalent to a surface elevation change of +2.1 cm yr−1, which shows that variations in firn depth remain important to consider in future mass balance studies using satellite altimetry.


2014 ◽  
Vol 8 (1) ◽  
pp. 421-451 ◽  
Author(s):  
S. R. M. Ligtenberg ◽  
P. Kuipers Munneke ◽  
M. R. van den Broeke

Abstract. A firn densification model (FDM) is used to assess spatial and temporal (1979–2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). Results from a time-dependent version of the FDM are compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) between both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5–15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e. assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5%, or 16.7 Gt yr−1 (with regard to the reconciled estimate over 1992–2011, Shepherd et al., 2012). The timing of the measurement is also important as temporal FAC variations of 1–2 m are simulated within the 33 yr period. Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are however more than compensated by increasing snowfall, leading to a 4–14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (−50 to −80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, increased precipitation results in a combined ice and air volume increase of ∼300 km3 yr−1 until 2100, equivalent to an elevation change of +2.1 cm yr−1. This shows that variations in firn depth remain important to consider in future mass balance studies using (satellite) altimetry.


2021 ◽  
Author(s):  
Christoph Kittel ◽  
Charles Amory ◽  
Stefan Hofer ◽  
Cécile Agosta ◽  
Nicolas C. Jourdain ◽  
...  

Abstract. Recent warm atmospheric conditions have damaged the ice shelves of the Antarctic Peninsula through surface melt and hydrofracturing, and could potentially initiate future collapse of other Antarctic ice shelves. However, model projections with similar greenhouse gas scenarios suggest large differences in cumulative 21st century surface melting. So far it remains unclear whether these differences are due to variations in warming rates in individual models, or whether local surface energy budget feedbacks could also play a notable role. Here we use the polar-oriented regional climate model MAR to study the physical mechanisms that will control future melt over the Antarctic ice shelves in high-emission scenarios RCP8.5 and SSP585. We show that clouds enhance future surface melt by increasing the atmospheric emissivity and longwave radiation towards the surface. Furthermore, we highlight that differences in meltwater production for the same climate warming rate depend on cloud properties and particularly cloud phase. Clouds containing a larger amount of liquid water lead to stronger melt, subsequently favouring the absorption of solar radiation due to the snow-melt-albedo feedback. By increasing melt differences over the ice shelves in the next decades, liquid-containing clouds could be a major source of uncertainties related to the future Antarctic contribution to sea level rise.


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


2017 ◽  
Vol 63 (240) ◽  
pp. 731-744 ◽  
Author(s):  
JORGE BERNALES ◽  
IRINA ROGOZHINA ◽  
MAIK THOMAS

ABSTRACTIce-shelf basal melting is the largest contributor to the negative mass balance of the Antarctic ice sheet. However, current implementations of ice/ocean interactions in ice-sheet models disagree with the distribution of sub-shelf melt and freezing rates revealed by recent observational studies. Here we present a novel combination of a continental-scale ice flow model and a calibration technique to derive the spatial distribution of basal melting and freezing rates for the whole Antarctic ice-shelf system. The modelled ice-sheet equilibrium state is evaluated against topographic and velocity observations. Our high-resolution (10-km spacing) simulation predicts an equilibrium ice-shelf basal mass balance of −1648.7 Gt a−1 that increases to −1917.0 Gt a−1 when the observed ice-shelf thinning rates are taken into account. Our estimates reproduce the complexity of the basal mass balance of Antarctic ice shelves, providing a reference for parameterisations of sub-shelf ocean/ice interactions in continental ice-sheet models. We perform a sensitivity analysis to assess the effects of variations in the model set-up, showing that the retrieved estimates of basal melting and freezing rates are largely insensitive to changes in the internal model parameters, but respond strongly to a reduction of model resolution and the uncertainty in the input datasets.


2010 ◽  
Vol 51 (55) ◽  
pp. 97-102 ◽  
Author(s):  
J. Wendt ◽  
A. Rivera ◽  
A. Wendt ◽  
F. Bown ◽  
R. Zamora ◽  
...  

AbstractRegional climate warming has caused several ice shelves on the Antarctic Peninsula to retreat and ultimately collapse during recent decades. Glaciers flowing into these retreating ice shelves have responded with accelerating ice flow and thinning. The Wordie Ice Shelf on the west coast of the Antarctic Peninsula was reported to have undergone a major areal reduction before 1989. Since then, this ice shelf has continued to retreat and now very little floating ice remains. Little information is currently available regarding the dynamic response of the glaciers feeding the Wordie Ice Shelf, but we describe a Chilean International Polar Year project, initiated in 2007, targeted at studying the glacier dynamics in this area and their relationship to local meteorological conditions. Various data were collected during field campaigns to Fleming Glacier in the austral summers of 2007/08 and 2008/09. In situ measurements of ice-flow velocity first made in 1974 were repeated and these confirm satellite-based assessments that velocity on the glacier has increased by 40–50% since 1974. Airborne lidar data collected in December 2008 can be compared with similar data collected in 2004 in collaboration with NASA and the Chilean Navy. This comparison indicates continued thinning of the glacier, with increasing rates of thinning downstream, with a mean of 4.1 ± 0.2 m a−1 at the grounding line of the glacier. These comparisons give little indication that the glacier is achieving a new equilibrium.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2020 ◽  
Author(s):  
Martim Mas e Braga ◽  
Jorge Bernales ◽  
Matthias Prange ◽  
Arjen P. Stroeven ◽  
Irina Rogozhina

2009 ◽  
Vol 3 (3) ◽  
pp. 1069-1107 ◽  
Author(s):  
D. J. Lampkin ◽  
C. C. Karmosky

Abstract. Surface melt has been increasing over recent years, especially over the Antarctic Peninsula, contributing to disintegration of shelves such as Larsen. Unfortunately, we are not realistically able to quantify surface snowmelt from ground-based methods because there is sparse coverage of automatic weather stations. Satellite based assessments of melt from passive microwave systems are limited in that they only provide an indication of melt occurrence and have coarse spatial resolution. An algorithm was developed to retrieve surface melt magnitude using coupled near-IR/thermal surface measurements from MODIS were calibrated by estimates of liquid water fraction (LWF) in the upper 1 cm of the firn derived from a one-dimensional physical snowmelt model (SNTHERM89). For the modeling phase of this study, SNTHERM89 was forced by hourly meteorological data from automatic weather station data at reference sites spanning a range of melt conditions across the Ross Ice Shelf during a relatively intense melt season (2002). Effective melt magnitude or LWF<eff> were derived for satellite composite periods covering the Antarctic summer months at a 4 km resolution over the entire Ross Ice Shelf, ranging from 0–0.5% LWF<eff> in early December to areas along the coast with as much as 1% LWF<eff> during the time of peak surface melt. Spatial and temporal variations in the magnitude of surface melt are related to both katabatic wind strength and advection during onshore flow.


Sign in / Sign up

Export Citation Format

Share Document