scholarly journals Shear-margin melting causes stronger transient ice discharge than ice-stream melting according to idealized simulations

2021 ◽  
Author(s):  
Johannes Feldmann ◽  
Ronja Reese ◽  
Ricarda Winkelmann ◽  
Anders Levermann

Abstract. Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet the melting increases the solid-ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an idealized, inherently buttressed ice-sheet-shelf system. Carrying out three-dimensional numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's 1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and 2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.

2019 ◽  
Vol 13 (3) ◽  
pp. 1043-1049 ◽  
Author(s):  
Tyler Pelle ◽  
Mathieu Morlighem ◽  
Johannes H. Bondzio

Abstract. Basal melting at the bottom of Antarctic ice shelves is a major control on glacier dynamics, as it modulates the amount of buttressing that floating ice shelves exert onto the ice streams feeding them. Three-dimensional ocean circulation numerical models provide reliable estimates of basal melt rates but remain too computationally expensive for century-scale projections. Ice sheet modelers therefore routinely rely on simplified parameterizations based on either ice shelf depth or more sophisticated box models. However, existing parameterizations do not accurately resolve the complex spatial patterns of sub-shelf melt rates that have been observed over Antarctica's ice shelves, especially in the vicinity of the grounding line, where basal melting is one of the primary drivers of grounding line migration. In this study, we couple the Potsdam Ice-shelf Cavity mOdel (PICO, Reese et al., 2018) to a buoyant plume melt rate parameterization (Lazeroms et al., 2018) to create PICOP, a novel basal melt rate parameterization that is easy to implement in transient ice sheet numerical models and produces a melt rate field that is in excellent agreement with the spatial distribution and magnitude of observations for several ocean basins. We test PICOP on the Amundsen Sea sector of West Antarctica, Totten, and Moscow University ice shelves in East Antarctica and the Filchner-Ronne Ice Shelf and compare the results to PICO. We find that PICOP is able to reproduce inferred high melt rates beneath Pine Island, Thwaites, and Totten glaciers (on the order of 100 m yr−1) and removes the “banding” pattern observed in melt rates produced by PICO over the Filchner-Ronne Ice Shelf. PICOP resolves many of the issues contemporary basal melt rate parameterizations face and is therefore a valuable tool for those looking to make future projections of Antarctic glaciers.


2018 ◽  
Author(s):  
Niall Gandy ◽  
Lauren J. Gregoire ◽  
Jeremy C. Ely ◽  
Christopher D. Clark ◽  
David M. Hodgson ◽  
...  

Abstract. Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. A valuable case to examine these processes is the last deglaciation of the British-Irish Ice Sheet. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British-Irish Ice Sheet during the last deglaciation, is well constrained, with abundant empirical data which could be used to inform, validate and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We simulate retreat from the shelf edge under constant "warm" surface mass balance and subshelf melt, to isolate the role of internal ice dynamics from external forcings. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at a "pinning-point" between mainland Scotland and the Isle of Lewis. At this stage, the presence of ice shelves became a major control on deglaciation, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch Strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the Marine Ice Sheet Instability and ice shelf buttressing during the deglaciation of parts of the British-Irish Ice Sheet. Thus, geological data could be used to constrain these processes in ice sheet models used for projecting the future of our contemporary ice sheets.


1990 ◽  
Vol 14 ◽  
pp. 17-19 ◽  
Author(s):  
W.J. Böhmer ◽  
K. Herterich

We present a simplified numerical three-dimensional ice-sheet/ice-shelf model with a coarse horizontal resolution (100 km), designed for simulations of ice-volume changes on ice-age time scales (100 000 years and longer). The ice-sheet part uses the shallow-ice approximation to determine the flow, and includes a three-dimensional temperature calculation. The ice shelf is described in a quasi-stationary way. Ice-shelf thickness depends only on the thicknesses at the grounding line and the distances to the grounding line. The effect of the transition zone between ice sheet and ice shelf (assuming a width ≪100 km) is parameterized in terms of the ice thicknesses defined on the coarse grid. The characteristics at the base of the transition zone formally enter through a friction coefficient μ. We performed a series of sensitivity experiments with the coupled system, by integrating over 10 000 model years, starting from the present (modelled) state of the Antarctic and forcing the model by currently-observed accumulation rates. The position of the grounding line of the ice-sheet/ice-shelf model is quite sensitive to the choice of the friction parameter μ (in the range 0.025 > μ > 0.01). With μ = 0.05, the grounding line was maintained at the currently-observed position in the model.


2017 ◽  
Author(s):  
Werner M. J. Lazeroms ◽  
Adrian Jenkins ◽  
G. Hilmar Gudmundsson ◽  
Roderik S. W. van de Wal

Abstract. Basal melting below ice shelves is a major factor in the decline of the Antarctic ice sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a nonlinear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth zgl and the local slope α of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for zgl and α for any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and flow patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. The result is a realistic map of basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field are therefore promising tools for future simulations of the Antarctic ice sheet.


2016 ◽  
Author(s):  
Lionel Favier ◽  
Frank Pattyn ◽  
Sophie Berger ◽  
Reinhard Drews

Abstract. The East Antarctic ice sheet is likely more stable than its West Antarctic counterpart, because its bed is largely lying above sea level. However, the ice sheet in Dronning Maud Land, East Antarctica, contains marine sectors that are in contact with the ocean through overdeepened marine basins interspersed by (more stable) grounded ice promontories and ice rises, pinning and stabilising the ice shelves. In this paper, we use the ice-sheet model BISICLES to investigate the effect of sub-ice shelf melting, using a series of scenarios compliant with current values, on the ice-dynamic stability of the outlet glaciers between the Lazarev and Roi Baudouin ice shelves over the next millennia. Overall, the sub-ice shelf melting substantially impacts the sea level contribution. Locally, we predict a short-term rapid grounding-line retreat of the overdeepened outlet glacier Hansenbreen, which further induces the collapse of the bordering ice promontories into ice rises. Furthermore, our analysis demonstrates that the onset of the marine ice-sheet retreat and subsequent promontory collapse is controlled by small pinning points within the ice shelves, mostly uncharted in pan-Antarctic datasets. Pinning points have a twofold impact on marine ice sheets. They decrease the ice discharge by buttressing effect, and play a crucial role in initialising marine ice sheets through data assimilation, leading to errors in ice-shelf rheology when omitted. Our results show that unpinning has a small effect on the total amount of sea level rise but locally affects the timing of grounding-line migration, advancing the collapse of a promontory by hundreds of years. On the other hand, omitting the same pinning point in data assimilation decreases the sea level contribution by 10 % and delays the promontory collapse by almost a millennium. This very subtle influence of pinning points on ice dynamics acts on kilometre scale and calls for a better knowledge of the Antarctic margins that will improve sea-level predictions.


1990 ◽  
Vol 14 ◽  
pp. 17-19 ◽  
Author(s):  
W.J. Böhmer ◽  
K. Herterich

We present a simplified numerical three-dimensional ice-sheet/ice-shelf model with a coarse horizontal resolution (100 km), designed for simulations of ice-volume changes on ice-age time scales (100 000 years and longer). The ice-sheet part uses the shallow-ice approximation to determine the flow, and includes a three-dimensional temperature calculation. The ice shelf is described in a quasi-stationary way. Ice-shelf thickness depends only on the thicknesses at the grounding line and the distances to the grounding line. The effect of the transition zone between ice sheet and ice shelf (assuming a width ≪100 km) is parameterized in terms of the ice thicknesses defined on the coarse grid. The characteristics at the base of the transition zone formally enter through a friction coefficient μ. We performed a series of sensitivity experiments with the coupled system, by integrating over 10 000 model years, starting from the present (modelled) state of the Antarctic and forcing the model by currently-observed accumulation rates. The position of the grounding line of the ice-sheet/ice-shelf model is quite sensitive to the choice of the friction parameter μ (in the range 0.025 > μ > 0.01). With μ = 0.05, the grounding line was maintained at the currently-observed position in the model.


2018 ◽  
Author(s):  
Tyler Pelle ◽  
Mathieu Morlighem ◽  
Johannes H. Bondzio

Abstract. Basal melt at the bottom of Antarctic ice shelves is a major control on glacier dynamics, as it modulates the amount of buttressing that floating ice shelves exert onto the ice streams feeding them. Three-dimensional ocean circulation numerical models provide reliable estimates of basal melt rates but remain too computationally expensive for century scale projections. Ice sheet modelers therefore routinely rely on simplified parameterizations either based on ice shelf depth or on more sophisticated box models. However, existing parameterizations do not accurately resolve the complex spatial patterns of sub-shelf melt rates that have been observed over Antarctica's ice shelves, especially in the vicinity of the grounding line, where basal melt is one of the primary drivers of grounding line migration. In this study, we couple the Potsdam Ice-shelf Cavity mOdel (PICO) to a buoyant Plume melt rate parameterization to create PICOP, a novel basal melt rate parameterization that is easy to implement in transient ice sheet numerical models and produces a melt rate field that is in excellent agreement with the spatial distribution and magnitude of observations for a wide variety of ocean basins. We test PICOP on the Amundsen Sea sector of West Antarctica, Totten and Moscow University ice shelves in Eastern Antarctica, and the Ronne-Filchner ice shelf and compare the results to PICO. We find that PICOP is able to reproduce the high melt rates near the grounding lines of Pine Island, Thwaites, and Totten glaciers (on the order of 100 m/yr) and removes the “banding” pattern observed in melt rates produced by PICO over the Ronne-Filchner ice shelf. PICOP resolves many of the issues contemporary basal melt rate parameterizations face and is therefore a valuable tool for those looking to make future projections of Antarctic glaciers.


2017 ◽  
Vol 63 (240) ◽  
pp. 731-744 ◽  
Author(s):  
JORGE BERNALES ◽  
IRINA ROGOZHINA ◽  
MAIK THOMAS

ABSTRACTIce-shelf basal melting is the largest contributor to the negative mass balance of the Antarctic ice sheet. However, current implementations of ice/ocean interactions in ice-sheet models disagree with the distribution of sub-shelf melt and freezing rates revealed by recent observational studies. Here we present a novel combination of a continental-scale ice flow model and a calibration technique to derive the spatial distribution of basal melting and freezing rates for the whole Antarctic ice-shelf system. The modelled ice-sheet equilibrium state is evaluated against topographic and velocity observations. Our high-resolution (10-km spacing) simulation predicts an equilibrium ice-shelf basal mass balance of −1648.7 Gt a−1 that increases to −1917.0 Gt a−1 when the observed ice-shelf thinning rates are taken into account. Our estimates reproduce the complexity of the basal mass balance of Antarctic ice shelves, providing a reference for parameterisations of sub-shelf ocean/ice interactions in continental ice-sheet models. We perform a sensitivity analysis to assess the effects of variations in the model set-up, showing that the retrieved estimates of basal melting and freezing rates are largely insensitive to changes in the internal model parameters, but respond strongly to a reduction of model resolution and the uncertainty in the input datasets.


2014 ◽  
Vol 8 (5) ◽  
pp. 1699-1710 ◽  
Author(s):  
H. Seroussi ◽  
M. Morlighem ◽  
E. Rignot ◽  
J. Mouginot ◽  
E. Larour ◽  
...  

Abstract. Pine Island Glacier, a major contributor to sea level rise in West Antarctica, has been undergoing significant changes over the last few decades. Here, we employ a three-dimensional, higher-order model to simulate its evolution over the next 50 yr in response to changes in its surface mass balance, the position of its calving front and ocean-induced ice shelf melting. Simulations show that the largest climatic impact on ice dynamics is the rate of ice shelf melting, which rapidly affects the glacier speed over several hundreds of kilometers upstream of the grounding line. Our simulations show that the speedup observed in the 1990s and 2000s is consistent with an increase in sub-ice-shelf melting. According to our modeling results, even if the grounding line stabilizes for a few decades, we find that the glacier reaction can continue for several decades longer. Furthermore, Pine Island Glacier will continue to change rapidly over the coming decades and remain a major contributor to sea level rise, even if ocean-induced melting is reduced.


2010 ◽  
Vol 4 (4) ◽  
pp. 2079-2101 ◽  
Author(s):  
A. G. C. Graham ◽  
F. O. Nitsche ◽  
R. D. Larter

Abstract. The southern Bellingshausen Sea (SBS) is a rapidly-changing part of West Antarctica, where oceanic and atmospheric warming has led to the recent basal melting and break-up of the Wilkins ice shelf, the dynamic thinning of fringing glaciers, and sea-ice reduction. Accurate sea-floor morphology is vital for understanding the continued effects of each process upon changes within Antarctica's ice sheets. Here we present a new bathymetric grid for the SBS compiled from shipborne echo-sounder, spot-sounding and sub-ice measurements. The 1-km grid is the most detailed compilation for the SBS to-date, revealing large cross-shelf troughs, shallow banks, and deep inner-shelf basins that continue inland of coastal ice shelves. The troughs now serve as pathways which allow warm deep water to access the ice fronts in the SBS. Our dataset highlights areas still lacking bathymetric constraint, as well as regions for further investigation, including the likely routes of palaeo-ice streams. The new compilation is a major improvement upon previous grids and will be a key dataset for incorporating into simulations of ocean circulation, ice-sheet change and history. It will also serve forecasts of ice stability and future sea-level contributions from ice loss in West Antarctica, required for the next IPCC assessment report in 2013.


Sign in / Sign up

Export Citation Format

Share Document