scholarly journals Comparison of manual snow water equivalent measurements: questioning the reference for the true SWE value

2021 ◽  
Author(s):  
Maxime Beaudoin-Galaise ◽  
Sylvain Jutras

Abstract. Manual measurement of snow water equivalent (SWE) is still important today for several applications such as hydrological model validation. This measurement can be performed with different types of snow tube sampler or by a snow pit. Although these methods have been performed for several decades, there is an apparent lack of information required to have a consensus regarding the best reference for “true” SWE. We define and estimate the uncertainty and measurement error of different methods of snow pits and snow samplers. Analysis was based upon measurements taken over five consecutive winters (2016–2020) from the same flat and open area. This study compares two snow pit methods and three snow samplers. In addition to including the Standard Federal sampler (SFS), this study documents the first use of two new large diameter samplers, the Hydro-Québec sampler (HQS) and Université Laval sampler (ULS). Large diameter samplers had lowest uncertainty (2.6 to 4.0 %). Snow pit methods had higher uncertainty due to instruments (7.1 to 11.4 %), close to that of the SFS (mean = 10.4 %). Given its larger collected snow volume for estimating SWE and its lower uncertainty, we posit that ULS represents the most appropriate method of reference for “true” SWE. By considering ULS as the reference in calculating mean bias error (MBE), different snow pit methods overestimated SWE by 16.6 to 26.2 %, which was much higher than SFS (8.4 %). This study suggests that large diameter samplers are the best method for estimating “true” SWE.

2010 ◽  
Vol 7 (3) ◽  
pp. 3481-3519 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.


2020 ◽  
Author(s):  
Martin Kubáň ◽  
Patrik Sleziak ◽  
Adam Brziak ◽  
Kamila Hlavčová ◽  
Ján Szolgay

<p>A multi-objective calibration of the parameters of conceptual hydrologic models has the potential to improve the consistency of the simulated model states, their representativeness with respect to catchment states and thereby to reduce the uncertainty in the estimation of hydrological model outputs. Observed in-situ or remotely sensed state variables, such as the snow cover distribution, snow depth, snow water equivalent and soil moisture were often considered as additional information in such calibration strategies and subsequently utilized in data assimilation for operational streamflow forecasting. The objective of this paper is to assess the effects of the inclusion of MODIS products characterizing soil moisture and the snow water equivalent in a multi-objective calibration strategy of an HBV type conceptual hydrological model under the highly variable physiographic conditions over the whole territory of Austria.</p><p>The methodology was tested using the Technical University of Vienna semi-distributed rainfall-runoff model (the TUW model), which was calibrated and validated in 213 Austrian catchments. For calibration we use measured data from the period 2005 to 2014. Subsequently, we simulated discharges, soil moisture and snow water equivalents based on parameters from the multi-objective calibration and compared these with the respective MODIS values. In general, the multi-objective calibration improved model performance when compared to results of model parametrisation calibrated only on discharge time series. Sensitivity analyses indicate that the magnitude of the model efficiency is regionally sensitive to the choice of the additional calibration variables. In the analysis of the results we indicate ranges how and where the runoff, soil moisture and snow water equivalent simulation efficiencies were sensitive to different setups of the multi-objective calibration strategy over the whole territory of Austria. It was attempted to regionalize the potential to increase of the overall model performance and the improvement in the consistency of the simulation of the two-state variables. Such regionalization may serve model users in the selection which remotely sensed variable or their combination is to be preferred in local modelling studies.</p>


2011 ◽  
Vol 8 (6) ◽  
pp. 11485-11518 ◽  
Author(s):  
T. Skaugen ◽  
F. Randen

Abstract. A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA), which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments of SWE and SCA and found to provide better estimates of the spatial variability than the current model for snow distribution used in the HBV model, the hydrological model used for flood forecasting in Norway. When implemented in the HBV model, simulations show that the precision in predicting runoff is maintained although there is one parameter less to calibrate.


2020 ◽  
Vol 35 (1) ◽  
pp. 273-284 ◽  
Author(s):  
G. T. Diro ◽  
H. Lin

AbstractAccurate and skillful subseasonal forecasts have tremendous potential for sectors that are sensitive to hazardous weather and climate events. Analysis of prediction skill for snow water equivalent (SWE) and near-surface air temperature (T2m) is carried out for three (GEPS, GEFS, and FIM) global models from the subseasonal experiment (SubX) project for the 2000–14 period. The prediction skill of SWE is higher than the skill of T2m at week-3 and week-4 lead times in all models. The GEPS forecast tends to yield higher (lower) prediction skill of SWE (T2m) compared to the other two systems in terms of correlation skill score. The snow–temperature relationship in reanalysis is characterized by a strong negative correlation over most of the midlatitude regions and a weak positive correlation over high-latitude Arctic regions. All forecast systems reproduced well these observed features; however, the snow–temperature relationship is slightly weaker in the GEPS model. Despite the apparent lack of skill in temperature forecasts at week 4, all three models are able to predict the sign of temperature anomalies associated with extreme SWE conditions albeit with reduced intensity. The strength of the predicted temperature anomaly associated with extreme snow conditions is slightly weaker in the GEPS forecast compared to reanalysis and the other two models, despite having better skill in predicting SWE. These apparent disparities suggest that weak snow–temperature coupling strength in the model is one of the contributing factors for the lower temperature skill.


1994 ◽  
Vol 25 (1-2) ◽  
pp. 113-128 ◽  
Author(s):  
Ch. Hottelet ◽  
Š. Blažková ◽  
M. Bičík

The performance of a version of the HBV-ETH model is evaluated, taking into account various aspect classes in each elevation belt in three different types of catchments: an alpine basin, and two basins in Bohemia at much lower elevation, with a snowpack which is smaller and of shorter duration. In all three cases a reasonably good agreement between modelled and observed runoff and between modelled and observed snowpack was achieved. In the smaller of the Bohemian basins (1.87 km2, 775-885 m a.s.l., influenced by deforestation), the effect of the presence and age or absence of forest on the development of the snow-water equivalent was found to be as important as the effect of aspect and altitude.


2010 ◽  
Vol 14 (7) ◽  
pp. 1205-1219 ◽  
Author(s):  
C. M. DeBeer ◽  
J. W. Pomeroy

Abstract. Simulation of areal snowmelt and snowcover depletion over time can be carried out by applying point-scale melt rate computations to distributions of snow water equivalent (SWE). In alpine basins, this can be done by considering these processes separately on individual slope units. However, differences in melt timing and rates arise at smaller spatial scales due to the variability in SWE and snowpack cold content, which affects the timing of melt initiation, depletion of the snowcover and spatial extent of the snowmelt runoff contributing area (SRCA). This study examined the effects of variability in SWE, internal energy and applied melt energy on melt rates and timing, and snowcover depletion in a small cold regions alpine basin over various scales ranging from point to basin. Melt rate computations were performed using a physically based energy balance snowmelt routine (Snobal) in the Cold Regions Hydrological Model (CRHM) and compared with measurements at 3 meteorological stations over a ridge within the basin. At the point scale, a negative association between daily melt rates and SWE was observed in the early melt period, with deeper snow requiring greater energy inputs to initiate melt. SWE distributions over the basin (stratified by slope) were measured using snow surveys and repeat LiDAR depth estimates, and used together with computed melt rates to simulate the areal snowcover depletion. Comparison with observations from georeferenced oblique photographs showed an improvement in simulated areal snowcover depletion curves when accounting for the variability in melt rate with depth of SWE in the early melt period. Finally, the SRCA was characterized as the product of the snowcovered area and the fraction of the SWE distribution undergoing active melt and producing an appreciable runoff quantity on each slope unit. Results for each slope were then aggregated to give the basin scale SRCA. The SRCA is controlled by the variability of melt amongst slope units and over individual SWE distributions, the variability of SWE, and the resulting snowcover depletion patterns over the basin.


Sign in / Sign up

Export Citation Format

Share Document