Provision of snow water equivalent from satellite data and the hydrological model PROMET using data assimilation techniques

Author(s):  
Florian Appel ◽  
Heike Bach ◽  
Natalie Ohl ◽  
Wolfram Mauser
2021 ◽  
Author(s):  
Ilaria Clemenzi ◽  
David Gustafsson ◽  
Jie Zhang ◽  
Björn Norell ◽  
Wolf Marchand ◽  
...  

<p>Snow in the mountains is the result of the interplay between meteorological conditions, e.g., precipitation, wind and solar radiation, and landscape features, e.g., vegetation and topography. For this reason, it is highly variable in time and space. It represents an important water storage for several sectors of the society including tourism, ecology and hydropower. The estimation of the amount of snow stored in winter and available in the form of snowmelt runoff can be strategic for their sustainability. In the hydropower sector, for example, the occurrence of higher snow and snowmelt runoff volumes at the end of the spring and in the early summer compared to the estimated one can substantially impact reservoir regulation with energy and economical losses. An accurate estimation of the snow volumes and their spatial and temporal distribution is thus essential for spring flood runoff prediction. Despite the increasing effort in the development of new acquisition techniques, the availability of extensive and representative snow and density measurements for snow water equivalent estimations is still limited. Hydrological models in combination with data assimilation of ground or remote sensing observations is a way to overcome these limitations. However, the impact of using different types of snow observations on snowmelt runoff predictions is, little understood. In this study we investigated the potential of assimilating in situ and remote sensing snow observations to improve snow water equivalent estimates and snowmelt runoff predictions. We modelled the seasonal snow water equivalent distribution in the Lake Överuman catchment, Northern Sweden, which is used for hydropower production. Simulations were performed using the semi-distributed hydrological model HYPE for the snow seasons 2017-2020. For this purpose, a snowfall distribution model based on wind-shelter factors was included to represent snow spatial distribution within model units. The units consist of 2.5x2.5 km<sup>2</sup> grid cells, which were further divided into hydrological response units based on elevation, vegetation and aspect. The impact on the estimation of the total catchment mean snow water equivalent and snowmelt runoff volume were evaluated using for data assimilation, gpr-based snow water equivalent data acquired along survey lines in the catchment in the early spring of the four years, snow water equivalent data obtained by a machine learning algorithm and satellite-based fractional snow cover data. Results show that the wind-shelter based snow distribution model was able to represent a similar spatial distribution as the gpr survey lines, when assessed on the catchment level. Deviations in the model performance within and between specific gpr survey lines indicate issues with the spatial distribution of input precipitation, and/or need to include explicit representation of snow drift between model units. The explicit snow distribution model also improved runoff simulations, and the ability of the model to improve forecast through data assimilation.</p>


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


2016 ◽  
Author(s):  
Jean M. Bergeron ◽  
Mélanie Trudel ◽  
Robert Leconte

Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the Ensemble Kalman Filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British-Columbia, Canada. Synthetic data includes daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than its individual counterparts, offering improvements over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions.


2020 ◽  
Author(s):  
Bertrand Cluzet ◽  
Matthieu Lafaysse ◽  
Emmanuel Cosme ◽  
Clément Albergel ◽  
Louis-François Meunier ◽  
...  

Abstract. Monitoring the evolution of the snowpack properties in mountainous areas is crucial for avalanche hazard forecasting and water resources management. In-situ and remotely sensed observations provide precious information on the snowpack but usually offer a limited spatio-temporal coverage of bulk or surface variables only. In particular, visible-near infrared (VIS-NIR) reflectance observations can inform on the snowpack surface properties but are limited by terrain shading and clouds. Snowpack modelling enables to estimate any physical variable, virtually anywhere, but is affected by large errors and uncertainties. Data assimilation offers a way to combine both sources of information, and to propagate information from observed areas to non observed areas. Here, we present CrocO, (Crocus-Observations) an ensemble data assimilation system able to ingest any snowpack observation (applied as a first step to the height of snow (HS) and VIS-NIR reflectances) in a spatialised geometry. CrocO uses an ensemble of snowpack simulations to represent modelling uncertainties, and a Particle Filter (PF) to reduce them. The PF is known to collapse when assimilating a too large number of observations. Two variants of the PF were specifically implemented to ensure that observations information is propagated in space while tackling this issue. The global algorithm ingests all available observations with an iterative inflation of observation errors, while the klocal algorithm is a localised approach performing a selection of the observations to assimilate based on background correlation patterns. Experiments are carried out in a twin experiment setup, with synthetic observations of HS and VIS-NIR reflectances available in only a 1/6th of the simulation domain. Results show that compared against runs without assimilation, analyses exhibit an average improvement of snow water equivalent Continuous Rank Probability Score (CRPS) of 60 % when assimilating HS with a 40-member ensemble, and an average 20 % CRPS improvement when assimilating reflectance with a 160-member ensemble. Significant improvements are also obtained outside the observation domain. These promising results open a way for the assimilation of real observations of reflectance, or of any snowpack observations in a spatialised context.


2010 ◽  
Vol 7 (3) ◽  
pp. 3481-3519 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.


2010 ◽  
Vol 7 (4) ◽  
pp. 6179-6205
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This paper investigates whether the use of remotely sensed latent heat fluxes improves the accuracy of spatially-distributed soil moisture predictions by a hydrological model. By using real data we aim to show the potential and limitations in practice. We use (i) satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact and (ii) an operational physically based distributed (25 m×25 m) hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Firstly, model outcomes of ETact are compared to the processed satellite data. Secondly, we perform data assimilation that updates the modelled soil moisture. We show that remotely sensed ETact is useful in hydrological modelling for two reasons. Firstly, in the procedure of model calibration: comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors (both conceptual and flux-related). Secondly, assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area with forest and deep groundwater levels. As both ASTER and MODIS images were available for the same days, this study provides also an excellent opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides much better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2020 ◽  
Author(s):  
Gabriele Schwaizer ◽  
Lars Keuris ◽  
Thomas Nagler ◽  
Chris Derksen ◽  
Kari Luojus ◽  
...  

<p>Seasonal snow is an important component of the global climate system. It is highly variable in space and time and sensitive to short term synoptic scale processes and long term climate-induced changes of temperature and precipitation. Current snow products derived from various satellite data applying different algorithms show significant discrepancies in extent and snow mass, a potential source for biases in climate monitoring and modelling. The recently launched ESA CCI+ Programme addresses seasonal snow as one of 9 Essential Climate Variables to be derived from satellite data.</p><p>In the snow_cci project, scheduled for 2018 to 2021 in its first phase, reliable fully validated processing lines are developed and implemented. These tools are used to generate homogeneous multi-sensor time series for the main parameters of global snow cover focusing on snow extent and snow water equivalent. Using GCOS guidelines, the requirements for these parameters are assessed and consolidated using the outcome of workshops and questionnaires addressing users dealing with different climate applications. Snow extent product generation applies algorithms accounting for fractional snow extent and cloud screening in order to generate consistent daily products for snow on the surface (viewable snow) and snow on the surface corrected for forest masking (snow on ground) with global coverage. Input data are medium resolution optical satellite images (AVHRR-2/3, AATSR, MODIS, VIIRS, SLSTR/OLCI) from 1981 to present. An iterative development cycle is applied including homogenisation of the snow extent products from different sensors by minimizing the bias. Independent validation of the snow products is performed for different seasons and climate zones around the globe from 1985 onwards, using as reference high resolution snow maps from Landsat and Sentinel- 2as well as in-situ snow data following standardized validation protocols.</p><p>Global time series of daily snow water equivalent (SWE) products are generated from passive microwave data from SMMR, SSM/I, and AMSR from 1978 onwards, combined with in-situ snow depth measurements. Long-term stability and quality of the product is assessed using independent snow survey data and by intercomparison with the snow information from global land process models.</p><p>The usability of the snow_cci products is ensured through the Climate Research Group, which performs case studies related to long term trends of seasonal snow, performs evaluations of CMIP-6 and other snow-focused climate model experiments, and applies the data for simulation of Arctic hydrological regimes.</p><p>In this presentation, we summarize the requirements and product specifications for the snow extent and SWE products, with a focus on climate applications. We present an overview of the algorithms and systems for generation of the time series. The 40 years (from 1980 onwards) time series of daily fractional snow extent products from AVHRR with 5 km pixel spacing, and the 20-year time series from MODIS (1 km pixel spacing) as well as the coarse resolution (25 km pixel spacing) of daily SWE products from 1978 onwards will be presented along with first results of the multi-sensor consistency checks and validation activities.</p>


Author(s):  
L.M. Kitaev ◽  
◽  
V.V. Tikhonov ◽  
T.B. Titkova ◽  
◽  
...  

2016 ◽  
Vol 20 (10) ◽  
pp. 4375-4389 ◽  
Author(s):  
Jean M. Bergeron ◽  
Mélanie Trudel ◽  
Robert Leconte

Abstract. The potential of data assimilation for hydrologic predictions has been demonstrated in many research studies. Watersheds over which multiple observation types are available can potentially further benefit from data assimilation by having multiple updated states from which hydrologic predictions can be generated. However, the magnitude and time span of the impact of the assimilation of an observation varies according not only to its type, but also to the variables included in the state vector. This study examines the impact of multivariate synthetic data assimilation using the ensemble Kalman filter (EnKF) into the spatially distributed hydrologic model CEQUEAU for the mountainous Nechako River located in British Columbia, Canada. Synthetic data include daily snow cover area (SCA), daily measurements of snow water equivalent (SWE) at three different locations and daily streamflow data at the watershed outlet. Results show a large variability of the continuous rank probability skill score over a wide range of prediction horizons (days to weeks) depending on the state vector configuration and the type of observations assimilated. Overall, the variables most closely linearly linked to the observations are the ones worth considering adding to the state vector due to the limitations imposed by the EnKF. The performance of the assimilation of basin-wide SCA, which does not have a decent proxy among potential state variables, does not surpass the open loop for any of the simulated variables. However, the assimilation of streamflow offers major improvements steadily throughout the year, but mainly over the short-term (up to 5 days) forecast horizons, while the impact of the assimilation of SWE gains more importance during the snowmelt period over the mid-term (up to 50 days) forecast horizon compared with open loop. The combined assimilation of streamflow and SWE performs better than their individual counterparts, offering improvements over all forecast horizons considered and throughout the whole year, including the critical period of snowmelt. This highlights the potential benefit of using multivariate data assimilation for streamflow predictions in snow-dominated regions.


2012 ◽  
Vol 16 (3) ◽  
pp. 815-831 ◽  
Author(s):  
M. He ◽  
T. S. Hogue ◽  
S. A. Margulis ◽  
K. J. Franz

Abstract. The current study proposes an integrated uncertainty and ensemble-based data assimilation framework (ICEA) and evaluates its viability in providing operational streamflow predictions via assimilating snow water equivalent (SWE) data. This step-wise framework applies a parameter uncertainty analysis algorithm (ISURF) to identify the uncertainty structure of sensitive model parameters, which is subsequently formulated into an Ensemble Kalman Filter (EnKF) to generate updated snow states for streamflow prediction. The framework is coupled to the US National Weather Service (NWS) snow and rainfall-runoff models. Its applicability is demonstrated for an operational basin of a western River Forecast Center (RFC) of the NWS. Performance of the framework is evaluated against existing operational baseline (RFC predictions), the stand-alone ISURF and the stand-alone EnKF. Results indicate that the ensemble-mean prediction of ICEA considerably outperforms predictions from the other three scenarios investigated, particularly in the context of predicting high flows (top 5th percentile). The ICEA streamflow ensemble predictions capture the variability of the observed streamflow well, however the ensemble is not wide enough to consistently contain the range of streamflow observations in the study basin. Our findings indicate that the ICEA has the potential to supplement the current operational (deterministic) forecasting method in terms of providing improved single-valued (e.g., ensemble mean) streamflow predictions as well as meaningful ensemble predictions.


Sign in / Sign up

Export Citation Format

Share Document