scholarly journals The impact of a seasonally ice free Arctic Ocean on the temperature, precipitation and surface mass balance of Svalbard

2012 ◽  
Vol 6 (1) ◽  
pp. 35-50 ◽  
Author(s):  
J. J. Day ◽  
J. L. Bamber ◽  
P. J. Valdes ◽  
J. Kohler

Abstract. The observed decline in summer sea ice extent since the 1970s is predicted to continue until the Arctic Ocean is seasonally ice free during the 21st Century. This will lead to a much perturbed Arctic climate with large changes in ocean surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers and is expected to experience rapid warming over the 21st Century. The total sea level rise if all the land ice on Svalbard were to melt completely is 0.02 m. The purpose of this study is to quantify the impact of climate change on Svalbard's surface mass balance (SMB) and to determine, in particular, what proportion of the projected changes in precipitation and SMB are a result of changes to the Arctic sea ice cover. To investigate this a regional climate model was forced with monthly mean climatologies of sea surface temperature (SST) and sea ice concentration for the periods 1961–1990 and 2061–2090 under two emission scenarios. In a novel forcing experiment, 20th Century SSTs and 21st Century sea ice were used to force one simulation to investigate the role of sea ice forcing. This experiment results in a 3.5 m water equivalent increase in Svalbard's SMB compared to the present day. This is because over 50 % of the projected increase in winter precipitation over Svalbard under the A1B emissions scenario is due to an increase in lower atmosphere moisture content associated with evaporation from the ice free ocean. These results indicate that increases in precipitation due to sea ice decline may act to moderate mass loss from Svalbard's glaciers due to future Arctic warming.

2011 ◽  
Vol 5 (4) ◽  
pp. 1887-1920
Author(s):  
J. J. Day ◽  
J. L. Bamber ◽  
P. J. Valdes ◽  
J. Kohler

Abstract. General circulation models (GCMs) predict a rapid decrease in Arctic sea ice extent in the 21st century. The decline of September sea ice is expected to continue until the Arctic Ocean is seasonally ice free, leading to a much perturbed Arctic climate with large changes in surface energy flux. Svalbard, located on the present day sea ice edge, contains many low lying ice caps and glaciers which are extremely sensitive to changes in climate. Records of past accumulation indicate that the surface mass balance (SMB) of Svalbard is also sensitive to changes in the position of the sea ice edge. To investigate the impact of 21st Century sea ice decline on the climate and surface mass balance of Svalbard a high resolution (25 km) regional climate model (RCM) was forced with a repeating cycle of sea surface temperatures (SSTs) and sea ice conditions for the periods 1961–1990 and 2061–2090. By prescribing 20th Century SSTs and 21st Century sea ice for one simulation, the impact of sea ice decline is isolated. This study shows that the coupled impact of sea ice decline and SST increase results in a decrease in SMB, whereas the impact of sea ice decline alone causes an increase in SMB of similar magnitude.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


2020 ◽  
Author(s):  
Bin Cheng ◽  
Timo Vihma ◽  
Zeling Liao ◽  
Ruibo Lei ◽  
Mario Hoppmann ◽  
...  

<p>A thermistor-string-based Snow and Ice Mass Balance Array (SIMBA) has been developed in recent years and used for monitoring snow and ice mass balance in the Arctic Ocean. SIMBA measures vertical environment temperature (ET) profiles through the air-snow-sea ice-ocean column using a thermistor string (5 m long, sensor spacing 2cm). Each thermistor sensor equipped with a small identical heating element. A small voltage was applied to the heating element so that the heat energy liberated in the vicinity of each sensor is the same. The heating time intervals lasted 60 s and 120 s, respectively. The heating temperatures (HT) after these two intervals were recorded. The ET was measured 4 times a day and once per day for the HT.</p><p>A total 15 SIMBA buoys have been deployed in the Arctic Ocean during the Chinese National Arctic Research Expedition (CHINARE) 2018 and the Nansen and Amundsen Basins Observational System (NABOS) 2018 field expeditions in late autumn. We applied a recently developed SIMBA algorithm to retrieve snow and ice thickness using SIMBA ET and HT temperature data. We focus particularly on sea ice bottom evolution during Arctic winter.</p><p>In mid-September 2018, 5 SIMBA buoys were deployed in the East Siberian Sea (NABOS2018) where snow was in practical zero cm and ice thickness ranged between 1.8 m – 2.6 m. By the end of May, those SIMBA buoys were drifted in the central Arctic where snow and ice thicknesses were around 0.05m - 0.2m and 2.6m – 3.2m, respectively. For those 10 SIMBA buoys deployed by the CHINARE2018 in the Chukchi Sea and Canadian Basin, the initial snow and ice thickness were ranged between 0.05m – 0.1cm and 1.5m – 2.5m, respectively.  By the end of May, those SIMBA buoys were drifted toward the north of Greenland where snow and ice thicknesses were around 0.2m - 0.3m and 2.0m – 3.5m, respectively. The ice bottom evolution derived by SIMBA algorithm agrees well with SIMBA HT identified ice-ocean interfaces. We also perform a preliminary investigation of sea ice bottom evolution measured by several SIMBA buoys deployed during the MOSAiC leg1 field campaign in winter 2019/2020.  </p>


2021 ◽  
Author(s):  
Jie Su ◽  
Hao Yin ◽  
Bin Cheng ◽  
Timo Vihma

<p>Due to its high surface albedo, strong thermal insulation and complex temporal and spatial distribution, snow on top of sea ice plays an important role in the air-ice-ocean interaction in polar regions and high latitudes. Accurate snow mass balance calculations are needed to better understand the evolution of sea ice and polar climate. Snow depth is affected by many factors, but in thermodynamic models many of them are treated in a relatively simple manner. One of such factors is snow density.  In reality, it varies a lot in space and time but a constant bulk snow density is often used to convert precipitation (snow water equivalence) to snow depth. The densification of snow is considered to affect snow depth mainly by altering snow thermal properties rather than directly on snow depth.</p><p>Based on the mass conservation principle, a one-dimensional high-resolution ice and snow thermodynamic model was applied to investigate the impact of snow density on snow depth along drift trajectories of 26 sea ice mass balance buoys (IMB) deployed in various parts of the Arctic Ocean. The ERA-Interim reanalysis data are used as atmospheric forcing for the ice model. In contrast to the bulk snow density approach, with a constant density of 330 kg/m<sup>3</sup> (T1) or 200kg/m<sup>3</sup> (T2), our new approach considers new and old snow with different time dependent densities (T3). The calculated results are compared with the snow thickness observed by the IMBs. The average snow depth observed by 26 IMBs during the snow season was 20±14 cm. Applying the bulk density (T1 and T2) or time dependent separate snow densities (T3), the modelled average snow depths are 16±13 cm, 22±17cm and 17±12cm, respectively. For the cases during snow accumulate period, the new approach (T3) has similar result with T1 and improved the modelled snow depth obviously from that of T2.</p>


2013 ◽  
Vol 7 (6) ◽  
pp. 1887-1900 ◽  
Author(s):  
B. A. Blazey ◽  
M. M. Holland ◽  
E. C. Hunke

Abstract. Sea ice cover in the Arctic Ocean is a continued focus of attention. This study investigates the impact of the snow overlying the sea ice in the Arctic Ocean. The impact of snow depth biases in the Community Climate System Model (CCSM) is shown to impact not only the sea ice, but also the overall Arctic climate. Following the identification of seasonal biases produced in CCSM simulations, the thermodynamic transfer through the snow–ice column is perturbed to determine model sensitivity to these biases. This study concludes that perturbations on the order of the observed biases result in modification of the annual mean conductive flux through the snow–ice column of 0.5 W m2 relative to an unmodified simulation. The results suggest that the ice has a complex response to snow characteristics, with ice of different thicknesses producing distinct reactions. Our results indicate the importance of an accurate simulation of snow on the Arctic sea ice. Consequently, future work investigating the impact of current precipitation biases and missing snow processes, such as blowing snow, densification, and seasonal changes, is warranted.


2021 ◽  
Vol 13 (21) ◽  
pp. 4436
Author(s):  
Elena Golubeva ◽  
Marina Kraineva ◽  
Gennady Platov ◽  
Dina Iakshina ◽  
Marina Tarkhanova

We used a satellite-derived global daily sea surface temperature (SST) dataset with resolution 0.25 × 0.25∘ to analyze interannual changes in the Arctic Shelf seas from 2000 to 2020 and to reveal extreme events in SST distribution. Results show that the second decade of the 21st century for the Siberian Arctic seas turned significantly warmer than the first decade, and the increase in SST in the Arctic seas could be considered in terms of marine heatwaves. Analyzing the spatial distribution of heatwaves and their characteristics, we showed that from 2018 to 2020, the surface warming extended to the northern deep-water region of the Laptev Sea 75∘ to 81∘N. To reveal the most important forcing for the northward extension of the marine heatwaves, we used three-dimensional numerical modeling of the Arctic Ocean based on a sea-ice and ocean model forced by the NCEP/NCAR Reanalysis. The simulation of the Arctic Ocean variability from 2000 to 2020 showed marine heatwaves and their increasing intensity in the northern region of the Kara and Laptev seas, closely connected to the disappearance of ice cover. A series of numerical experiments on the sensitivity of the model showed that the main factors affecting the Arctic sea-ice loss and the formation of anomalous temperature north of the Siberian Arctic seas are equally the thermal and dynamic effects of the atmosphere. Numerical modeling allows us to examine the impact of other physical mechanisms as well. Among them were the state of the ocean and winter sea ice, the formation of fast ice polynias and riverine heat influx.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2018 ◽  
Vol 12 (9) ◽  
pp. 2855-2868 ◽  
Author(s):  
Ann Keen ◽  
Ed Blockley

Abstract. We present a method for analysing changes in the modelled volume budget of the Arctic sea ice as the ice declines during the 21st century. We apply the method to the CMIP5 global coupled model HadGEM2-ES to evaluate how the budget components evolve under a range of different forcing scenarios. As the climate warms and the ice cover declines, the sea ice processes that change the most in HadGEM2-ES are summer melting at the top surface of the ice due to increased net downward radiation and basal melting due to extra heat from the warming ocean. There is also extra basal ice formation due to the thinning ice. However, the impact of these changes on the volume budget is affected by the declining ice cover. For example, as the autumn ice cover declines the volume of ice formed by basal growth declines as there is a reduced area over which this ice growth can occur. As a result, the biggest contribution to Arctic ice decline in HadGEM2-ES is the reduction in the total amount of basal ice growth during the autumn and early winter. Changes in the volume budget during the 21st century have a distinctive seasonal cycle, with processes contributing to ice decline occurring in May–June and September to November. During July and August the total amount of sea ice melt decreases, again due to the reducing ice cover. The choice of forcing scenario affects the rate of ice decline and the timing and magnitude of changes in the volume budget components. For the HadGEM2-ES model and for the range of scenarios considered for CMIP5, the mean changes in the volume budget depend strongly on the evolving ice area and are independent of the speed at which the ice cover declines.


Sign in / Sign up

Export Citation Format

Share Document