scholarly journals Investigating the dynamics of bulk snow density in dry and wet conditions using a one-dimensional model

2013 ◽  
Vol 7 (2) ◽  
pp. 433-444 ◽  
Author(s):  
C. De Michele ◽  
F. Avanzi ◽  
A. Ghezzi ◽  
C. Jommi

Abstract. The snowpack is a complicated multiphase mixture with mechanical, hydraulic, and thermal properties highly variable during the year in response to climatic forcings. Bulk density is a macroscopic property of the snowpack used, together with snow depth, to quantify the water stored. In seasonal snowpacks, the bulk density is characterized by a strongly non-linear behaviour due to the occurrence of both dry and wet conditions. In the literature, bulk snow density estimates are obtained principally with multiple regressions, and snowpack models have put the attention principally on the snow depth and snow water equivalent. Here a one-dimensional model for the temporal dynamics of the snowpack, with particular attention to the bulk snow density, has been proposed, accounting for both dry and wet conditions. The model represents the snowpack as a two-constituent mixture: a dry part including ice structure, and air; and a wet part constituted by liquid water. It describes the dynamics of three variables: the depth and density of the dry part and the depth of liquid water. The model has been calibrated and validated against hourly data registered at three SNOTEL stations, western US, with mean values of the Nash–Sutcliffe coefficient ≈0.73–0.97 in the validation period.

2012 ◽  
Vol 6 (4) ◽  
pp. 2305-2325
Author(s):  
C. De Michele ◽  
F. Avanzi ◽  
A. Ghezzi ◽  
C. Jommi

Abstract. Snowpack is a complicated multiphase mixture with mechanical, hydraulic, and thermal properties, highly variable within the year in response to climatic forcings. Bulk density is a macroscopic property of the snowpack used, together with snow depth, to quantify the water stored. In seasonal snowpacks, the bulk density is characterized by a strong non-linear behaviour due to the occurrence of both dry and wet conditions. In literature, bulk snow density estimates are obtained principally with multiple regressions, and snowpack models have put the attention principally on the snow depth and snow water equivalent. Here a one-dimensional model for the temporal dynamics of the bulk snow density has been proposed, accounting for both dry and moist conditions. The model assimilates the snowpack to a two-constituent mixture: a dry part including ice structure, and air, and a wet part constituted by liquid water. It describes the dynamics of three variables: the depth and density of the dry part and the depth of liquid water. The model has been calibrated and validated against hourly data registered in two SNOTEL stations, Western US, with mean values of the Nash-Sutcliffe coefficient ≈0.90–0.92.


1993 ◽  
Vol 18 ◽  
pp. 22-26 ◽  
Author(s):  
Takeshi Yamazaki ◽  
Junsei Kondo ◽  
Takashi Sakuraoka ◽  
Toru Nakamura

A one-dimensional model has been developed to simulate the evolution of snow-cover characteristics using meteorological data. This model takes into account the heat balance at the snow surface and heat conduction in the snow cover as well as liquid water flow and densification. The basic variables of the model are snow temperature, liquid water content, snow density and the solid impurities density. With these four variables, the model can calculate albedo, thermal conductivity, liquid water flux, snow depth, water equivalent and the amount of runoff.Diurnal variation of profiles of snow temperature, water content and snow density, and meteorological elements were observed at Mount Zao Bodaira, Yamagata Prefecture, Japan. Simulated diurnal variation patterns of each component by the model were in good agreement with the observations. Moreover, the snow-cover characteristics were simulated for three 90-day periods with meteorological data and snow pit observations at Sapporo. It was found that the model was able to simulate long-period variations of albedo, snow depth, snow water equivalent and the snow density profile.


1993 ◽  
Vol 18 ◽  
pp. 22-26 ◽  
Author(s):  
Takeshi Yamazaki ◽  
Junsei Kondo ◽  
Takashi Sakuraoka ◽  
Toru Nakamura

A one-dimensional model has been developed to simulate the evolution of snow-cover characteristics using meteorological data. This model takes into account the heat balance at the snow surface and heat conduction in the snow cover as well as liquid water flow and densification. The basic variables of the model are snow temperature, liquid water content, snow density and the solid impurities density. With these four variables, the model can calculate albedo, thermal conductivity, liquid water flux, snow depth, water equivalent and the amount of runoff. Diurnal variation of profiles of snow temperature, water content and snow density, and meteorological elements were observed at Mount Zao Bodaira, Yamagata Prefecture, Japan. Simulated diurnal variation patterns of each component by the model were in good agreement with the observations. Moreover, the snow-cover characteristics were simulated for three 90-day periods with meteorological data and snow pit observations at Sapporo. It was found that the model was able to simulate long-period variations of albedo, snow depth, snow water equivalent and the snow density profile.


2020 ◽  
Vol 24 (8) ◽  
pp. 4061-4090 ◽  
Author(s):  
Silvia Terzago ◽  
Valentina Andreoli ◽  
Gabriele Arduini ◽  
Gianpaolo Balsamo ◽  
Lorenzo Campo ◽  
...  

Abstract. Snow models are usually evaluated at sites providing high-quality meteorological data, so that the uncertainty in the meteorological input data can be neglected when assessing model performances. However, high-quality input data are rarely available in mountain areas and, in practical applications, the meteorological forcing used to drive snow models is typically derived from spatial interpolation of the available in situ data or from reanalyses, whose accuracy can be considerably lower. In order to fully characterize the performances of a snow model, the model sensitivity to errors in the input data should be quantified. In this study we test the ability of six snow models to reproduce snow water equivalent, snow density and snow depth when they are forced by meteorological input data with gradually lower accuracy. The SNOWPACK, GEOTOP, HTESSEL, UTOPIA, SMASH and S3M snow models are forced, first, with high-quality measurements performed at the experimental site of Torgnon, located at 2160 m a.s.l. in the Italian Alps (control run). Then, the models are forced by data at gradually lower temporal and/or spatial resolution, obtained by (i) sampling the original Torgnon 30 min time series at 3, 6, and 12 h, (ii) spatially interpolating neighbouring in situ station measurements and (iii) extracting information from GLDAS, ERA5 and ERA-Interim reanalyses at the grid point closest to the Torgnon site. Since the selected models are characterized by different degrees of complexity, from highly sophisticated multi-layer snow models to simple, empirical, single-layer snow schemes, we also discuss the results of these experiments in relation to the model complexity. The results show that, when forced by accurate 30 min resolution weather station data, the single-layer, intermediate-complexity snow models HTESSEL and UTOPIA provide similar skills to the more sophisticated multi-layer model SNOWPACK, and these three models show better agreement with observations and more robust performances over different seasons compared to the lower-complexity models SMASH and S3M. All models forced by 3-hourly data provide similar skills to the control run, while the use of 6- and 12-hourly temporal resolution forcings may lead to a reduction in model performances if the incoming shortwave radiation is not properly represented. The SMASH model generally shows low sensitivity to the temporal degradation of the input data. Spatially interpolated data from neighbouring stations and reanalyses are found to be adequate forcings, provided that temperature and precipitation variables are not affected by large biases over the considered period. However, a simple bias-adjustment technique applied to ERA-Interim temperatures allowed all models to achieve similar performances to the control run. Regardless of their complexity, all models show weaknesses in the representation of the snow density.


2010 ◽  
Vol 7 (3) ◽  
pp. 3481-3519 ◽  
Author(s):  
M. Shrestha ◽  
L. Wang ◽  
T. Koike ◽  
Y. Xue ◽  
Y. Hirabayashi

Abstract. The snow physics of a distributed biosphere hydrological model, referred to as the Water and Energy Budget based Distributed Hydrological Model (WEB-DHM) is improved by incorporating the three-layer physically based energy balance snowmelt model of Simplified Simple Biosphere 3 (SSiB3) and the Biosphere-Atmosphere Transfer Scheme (BATS) albedo scheme. WEB-DHM with improved snow physics (WEB-DHM-S) can simulate the variability of snow density, snow depth and snow water equivalent, liquid water and ice content in each layer, prognostic snow albedo, diurnal variation in snow surface temperature, thermal heat due to conduction and liquid water retention. The performance of WEB-DHM-S is evaluated at two alpine sites of the Snow Model Intercomparison Project with different climate characteristics: Col de Porte in France and Weissfluhjoch in Switzerland. The simulation results of the snow depth, snow water equivalent, surface temperature, snow albedo and snowmelt runoff reveal that WEB-DHM-S is capable of simulating the internal snow process better than the original WEB-DHM, with the root mean square error and bias error being remarkably reduced. Although WEB-DHM-S is only evaluated at a point scale for the simulation of snow processes, this study provides a benchmark for the application of WEB-DHM-S in cold regions in the assessment of the basin-scale snow water equivalent and seasonal discharge simulation for water resources management.


2021 ◽  
Author(s):  
Colleen Mortimer ◽  
Lawrence Mudryk ◽  
Chris Derksen ◽  
Kari Luojus ◽  
Pinja Venalainen ◽  
...  

<p>The European Space Agency Snow CCI+ project provides global homogenized long time series of daily snow extent and snow water equivalent (SWE). The Snow CCI SWE product is built on the Finish Meteorological Institute's GlobSnow algorithm, which combines passive microwave data with in situ snow depth information to estimate SWE. The CCI SWE product improves upon previous versions of GlobSnow through targeted changes to the spatial resolution, ancillary data, and snow density parameterization.</p><p>Previous GlobSnow SWE products used a constant snow density of 0.24 kg m<sup>-3</sup> to convert snow depth to SWE. The CCI SWE product applies spatially and temporally varying density fields, derived by krigging in situ snow density information from historical snow transects to correct biases in estimated SWE. Grid spacing was improved from 25 km to 12.5 km by applying an enhanced spatial resolution microwave brightness temperature dataset. We assess step-wise how each of these targeted changes acts to improve or worsen the product by evaluating with snow transect measurements and comparing hemispheric snow mass and trend differences.</p><p>Together, when compared to GlobSnow v3, these changes improved RMSE by ~5 cm and correlation by ~0.1 against a suite of snow transect measurements from Canada, Finland, and Russia. Although the hemispheric snow mass anomalies of CCI SWE and GlobSnow v3 are similar, there are sizeable differences in the climatological SWE, most notably a one month delay in the timing of peak SWE and lower SWE during the accumulation season. These shifts were expected because the variable snow density is lower than the former fixed value of 0.24 kg m<sup>-3</sup> early in the snow season, but then increases over the course of the snow season. We also examine intermediate products to determine the relative improvements attributable solely to the increased spatial resolution versus changes due to the snow density parameterizations. Such systematic evaluations are critical to directing future product development.</p>


2020 ◽  
Author(s):  
Nicolas Guyennon ◽  
Franco Salerno ◽  
Mauro Valt ◽  
Anna Bruna Petrangeli ◽  
Rosa Maria Salvatori ◽  
...  

<p>The Snow Water Equivalent (SWE), combining the information of snow depth and snow density is a necessary variable for snow-hydrological studies and applications, as well as, for ecological function or avalanche forecasting. Direct automatics measurements of SWE requires an easy access to the monitoring site while manual measurements are costly and challenging. On the other hands, physically based models for snow density estimates require local meteorological data limiting their application in complex topography such as mountains areas. For this reason, different empirical regressions methods for the characterization of SWE and associated variability have been proposed for regional studies. In this study, we report our experience based on simple regression models able to characterize the new snow density and the snow bulk density at the scale of the entire Italian Alps, taking advantage of a decade of distributed observations. 12112 snowfall observations (2005-2015) gathered at 122 stations, ranging from 650 m to 2858 m a.s.l., have been analyzed to characterize the new snow density. 6078 snowpack depth and bulk density measurements (2009-2018) from 150 sites, ranging from 640 m to 3400 m a.s.l., have been collected to investigate the snow bulk density.</p><p>The mean air temperature of the 24 hours preceding the snowfall event, as a proxy of the transformation of freshly-fallen snow, has been found to be the best predictor of the new snow density, within 30% of uncertainty over the whole Italian Alps. While monthly regression allows considering part of the snow state variability through seasonality, the analysis of the associated residues suggests that, in the lack of local wind field information, the adoption of a local approach is not able to substantially increase the predictive capabilities of the model. The snow bulk density variability mainly responds to seasonality and can be estimated adopting the day of the year, as a proxy of the combined effect of compaction through seasonal snow accumulation and partial melting during the late season. Such approach enables a continuous (along the season) description of the SWE variation within 15% of uncertainty, similar to the within-site variability, presenting even better performances during the late season through the introduction of non-linearity. Differently from new snow density, regionalization performed considering separately those regions close to the sea improves the overall performances.</p><p>Although more performing models have already been proposed, the variables necessary to feed the proposed regressions (i.e. mean air temperature for new snow density and the day of the year for the bulk snow density) are easy to be acquired, making the proposed models valuable tools either in case of low instrumented watersheds or for past reconstruction. Finally, the low number of parameters to be calibrated makes the proposed regressions easy to be tested in other regions.  </p>


2008 ◽  
Vol 9 (6) ◽  
pp. 1416-1426 ◽  
Author(s):  
Naoki Mizukami ◽  
Sanja Perica

Abstract Snow density is calculated as a ratio of snow water equivalent to snow depth. Until the late 1990s, there were no continuous simultaneous measurements of snow water equivalent and snow depth covering large areas. Because of that, spatiotemporal characteristics of snowpack density could not be well described. Since then, the Natural Resources Conservation Service (NRCS) has been collecting both types of data daily throughout the winter season at snowpack telemetry (SNOTEL) sites located in the mountainous areas of the western United States. This new dataset provided an opportunity to examine the spatiotemporal characteristics of snowpack density. The analysis of approximately seven years of data showed that at a given location and throughout the winter season, year-to-year snowpack density changes are significantly smaller than corresponding snow depth and snow water equivalent changes. As a result, reliable climatological estimates of snow density could be obtained from relatively short records. Snow density magnitudes and densification rates (i.e., rates at which snow densities change in time) were found to be location dependent. During early and midwinter, the densification rate is correlated with density. Starting in early or mid-March, however, snowpack density increases by approximately 2.0 kg m−3 day−1 regardless of location. Cluster analysis was used to obtain qualitative information on spatial patterns of snowpack density and densification rates. Four clusters were identified, each with a distinct density magnitude and densification rate. The most significant physiographic factor that discriminates between clusters was proximity to a large water body. Within individual mountain ranges, snowpack density characteristics were primarily dependent on elevation.


2013 ◽  
Vol 7 (3) ◽  
pp. 2943-2977
Author(s):  
G. A. Sexstone ◽  
S. R. Fassnacht

Abstract. This study uses a combination of field measurements and Natural Resource Conservation Service (NRCS) operational snow data to understand the drivers of snow water equivalent (SWE) spatial variability at the basin scale. Historic snow course snowpack density observations were analyzed within a multiple linear regression snow density model to estimate SWE directly from snow depth measurements. Snow surveys were completed on or about 1 April 2011 and 2012 and combined with NRCS operational measurements to investigate the spatial variability of SWE. Bivariate relations and multiple linear regression models were developed to understand the relation of SWE with terrain and canopy variables (derived using a geographic information system (GIS)). Calculation of SWE directly from snow depth measurement using the snow density model has strong statistical performance and model validation suggests the model is transferable to independent data within the bounds of the original dataset. This pathway of estimating SWE directly from snow depth measurement is useful when evaluating snowpack properties at the basin scale, where many time consuming measurements of SWE are often not feasible. During both water year (WY) 2011 and 2012, elevation and location (UTM Easting and UTM Northing) were the most important model variables, suggesting that orographic precipitation and storm track patterns are likely consistent drivers of basin scale SWE variability. Terrain characteristics, such as slope, aspect, and curvature, were also shown to be important variables, but to a lesser extent at the scale of interest.


2019 ◽  
Author(s):  
Silvia Terzago ◽  
Valentina Andreoli ◽  
Gabriele Arduini ◽  
Gianpaolo Balsamo ◽  
Lorenzo Campo ◽  
...  

Abstract. Snow models are usually evaluated at sites providing high-quality meteorological data, so that the uncertainty in the meteorological input data can be neglected when assessing the model performances. However, high-quality input data are rarely available in mountain areas and, in practical applications, the meteorological forcing to drive snow models is typically derived from spatial interpolation of the available in-situ data or from reanalyses, whose accuracy can be considerably lower. In order to fully characterize the performances of a snow model, the model sensitivity to errors in the input data should be quantified. In this study we test the ability of six snow models to reproduce snow water equivalent, snow density and snow depth when they are forced by meteorological input data with gradually lower accuracy. The SNOWPACK, GEOTOP, HTESSEL, UTOPIA, SMASH and S3M snow models are forced, first, with high-quality measurements performed at the experimental site of Torgnon, located at 2160 m a.s.l. in the Italian Alps (control run). Then, the models are forced by data at gradually lower temporal and/or spatial resolutions, obtained (i) by sampling the original Torgnon 30-minute time series at 3, 6, and 12 hours, (ii) by spatially interpolating neighboring in-situ station measurements and (iii) by extracting information from GLDAS, ERA5, ERA-Interim reanalyses at the gridpoint closest to the Torgnon station. Since the selected models are characterized by different degrees of complexity, from highly sophisticated multi-layer snow models to simple, empirical, single-layer snow schemes, we also discuss the results of these experiments in relation to the model complexity. Results show that when forced by accurate 30-min resolution weather station data the single-layer, intermediate-complexity snow models HTESSEL and UTOPIA provide similar skills as the more sophisticated multi-layer model SNOWPACK, and these three models show better agreement with observations and more robust performances over different seasons compared to the lower complexity models SMASH and S3M. All models forced by 3-hourly data provide similar skills as the control run while with 6- and 12-hourly temporal resolution forcings we generally observe a reduction in model performances, except for the SMASH model which shows low sensitivity to the temporal degradation of the input data. Spatially interpolated data from neighboring stations and reanalyses result to be adequate forcings, provided that temperature and precipitation variables are not affected by large biases over the considered period. A simple bias-adjustment technique applied to ERA-Interim temperatures, however, allowed all models to achieve similar performances as in the control run. All models irrespectively of their complexity show weaknesses in the representation of the snow density.


Sign in / Sign up

Export Citation Format

Share Document