scholarly journals Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties

2015 ◽  
Vol 9 (1) ◽  
pp. 367-384 ◽  
Author(s):  
A. Diez ◽  
O. Eisen

Abstract. A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy is mainly provided by crystal orientation fabric (COF) data from ice cores. However, the developed anisotropic fabric influences not only the flow behaviour of ice but also the propagation of seismic waves. Two effects are important: (i) sudden changes in COF lead to englacial reflections, and (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. A framework is presented here to connect COF data from ice cores with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice–bed contact. Hence, it is possible to remotely determine the bulk ice anisotropy.

2014 ◽  
Vol 8 (4) ◽  
pp. 4349-4395 ◽  
Author(s):  
A. Diez ◽  
O. Eisen

Abstract. A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy, to understand its contribution to ice dynamics, is mainly provided by crystal orientation fabric (COF) data from ice cores. However, the developed anisotropic fabric does not only influence the flow behaviour of ice, but also the propagation of seismic waves. Two effects are important: (i) sudden changes in COF lead to englacial reflections and (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, also recorded traveltimes. A framework is presented here to connect COF data with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics from ice-core data. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice-bed contact. Our work, therefore, provides a contribution to remotely determine the state of bulk ice anisotropy.


2015 ◽  
Vol 9 (1) ◽  
pp. 385-398 ◽  
Author(s):  
A. Diez ◽  
O. Eisen ◽  
C. Hofstede ◽  
A. Lambrecht ◽  
C. Mayer ◽  
...  

Abstract. We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn–ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.


2014 ◽  
Vol 8 (4) ◽  
pp. 4397-4430 ◽  
Author(s):  
A. Diez ◽  
O. Eisen ◽  
C. Hofstede ◽  
A. Lambrecht ◽  
C. Mayer ◽  
...  

Abstract. We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded traveltimes. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from a vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. With this validation of seismic velocities we make use of abrupt changes in COF as common reflection mechanism for seismic and radar data below the firn–ice transition to investigate their occurrence by comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic deployment to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous viscosity from preferred crystal orientations.


2018 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the greatest challenges in glaciology, with respect to sea level predictions, is the ability to gain information on bulk ice anisotropy in ice sheets and glaciers, which is urgently needed to improve our understanding of ice-sheet dynamics. Therefore, we investigate the effect of crystal anisotropy on seismic velocities in a glacier. We revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c-axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an Alpine (KCC) and a polar (EDML) ice core. The results allow a quantitative evaluation of the earlier approximative eigenvalue framework. Additionally, our findings highlight the variation in seismic velocity as a function of the horizontal azimuth of the seismic plane, which can be significant in case of non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting. For the first time, we assess the change in seismic anisotropy that can be expected on a short spatial scale in a glacier due to a strong variability in crystal-orientation fabric. Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


2018 ◽  
Vol 12 (5) ◽  
pp. 1715-1734 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s−1 for P-wave and 200 m s−1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s−1 for the alpine ice core and 59 m s−1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s−1 for P-wave and 280 m s−1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s−1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s−1 for P wave and more than 200 m s−1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s−1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


2020 ◽  
Author(s):  
Sebastian Hellmann ◽  
Johanna Kerch ◽  
Melchior Grab ◽  
Henning Löwe ◽  
Ilka Weikusat ◽  
...  

<p>Understanding the internal structure of glacier ice is of high interest for studying ice flow mechanics and glacier dynamics. The micro-scale deformation mechanisms cause a reorientation and alignment of the ice grains resulting in a polycrystalline structure with a strong anisotropy. By studying the crystal orientation fabric (COF), details about past and ongoing ice deformation processes can be derived. Usually, obtaining COF requires a work-intensive ice core analysis, which is typically carried out only at a few ice core samples. When similar information can be obtained from geophysical, for example, seismic experiments, a more detailed and more continuous image about the ice deformation would be available. <br>For checking the suitability of seismic data for such purposes, we have analysed the COF of several ice core samples extracted from Rhone Glacier, a temperate glacier located in the Central Swiss Alps. The COF analysis yield a polycrystalline elasticity tensor for a given volume of ice, from which we predicted seismic velocities for acoustic waves originating from any azimuth and inclination. The seismic data predicted were then verified with ultrasonic experiments conducted along the ice core in the vicinity of the analysed COF. Additional X-ray tomographic measurements yield further constraints about the microstructure, especially about the air bubble content in the ice affecting the data of the ultrasonic experiments. Predicted and measured velocities generally show a good match. This is a very encouraging result, because it suggests that in-situ measurements of seismic velocities can be employed for studying ice deformation. A possible option is to perform seismic cross-hole measurements within an array of boreholes drilled into the glacier ice.</p>


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA111-WA118 ◽  
Author(s):  
José A. Vélez ◽  
Georgios P. Tsoflias ◽  
Ross A. Black ◽  
Cornelis J. Van der Veen ◽  
Sridhar Anandakrishnan

Preferred crystal orientation fabrics (COFs) within an ice sheet or glacier are typically found from ice cores. We conducted experiments at the North Greenland Eemian Ice Drilling (NEEM) facility ice core location, where COF data were available at Jakobshavn Isbræ west Greenland, to test if COF can be determined seismically. We used observations of anisotropic seismic wave propagation on multioffset gathers and englacial imaging from a 2D reflection profile. Anisotropy analysis of the NEEM data yielded mean c-axes distributed over a conical region of 30° to 32° from vertical. No internal ice seismic reflectors were imaged. Direct COF measurements collected in the ice core agreed with the seismic observations. At Jakobshavn Isbræ, we used a multioffset gather and a 2D reflection profile, but we lacked ice core data. Englacial reflectors allowed the determination of ice column interval properties. Anisotropy analysis found that the upper 1640 m of the ice column consisted of cold ([Formula: see text]) and mostly isotropic ice with c-axes distributed over a conical region of 80° from vertical. The lower 300 m of the ice column was characterized by warm ([Formula: see text]) ice with COF. These observations were consistent with complex ice fabric development and temperature estimations over the same region of Jakobshavn Isbræ. This study demonstrated that the ice sheet and glacier ice anisotropy information can be gained from seismic field observations.


1994 ◽  
Vol 20 ◽  
pp. 219-225 ◽  
Author(s):  
E.D. Waddington ◽  
D.L. Morse

10m firn temperatures are commonly used on the Antarctic plateau to estimate mean annual air temperatures. 10m firn temperatures measured at Taylor Dome (also referred to as McMurdo Dome in the literature), Antarctica, are influenced by a factor other than altitude and latitude that varies systematically across Taylor Dome. Some inter-related factors possibly contributing to the modern temperature variability are differences in sensible heat from warm or cold air masses, differences in wind strength and source region, differences in temperature inversion strength and differences in cloudiness. Our preliminary data are compatible with spatially variable katabatic winds that could control the winter temperature inversion strength to provide a large part of the signal. This has implications for paleoclimate studies.(1) Variations of the stable isotopes δ18O and δD from ice cores are a proxy for paleotemperature. The isotope thermometer is calibrated by comparing local isotope ratios with corresponding measured temperatures. In order to derive a useful isotope-temperature calibration, we must understand the processes that control the modern spatial variability of temperature. (2) In order to quantify past changes in local climate, we must understand processes that influence local spatial variability. If those processes differed in the past, ice-core climate reconstruction would be affected in two ways: through alteration of the geochemical record and through alteration of deep ice and firn temperatures.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 294
Author(s):  
Norel Rimbu ◽  
Monica Ionita ◽  
Gerrit Lohmann

The variability of stable oxygen isotope ratios (δ18O) from Greenland ice cores is commonly linked to changes in local climate and associated teleconnection patterns. In this respect, in this study we investigate ice core δ18O variability from a synoptic scale perspective to assess the potential of such records as proxies for extreme climate variability and associated weather patterns. We show that positive (negative) δ18O anomalies in three southern and central Greenland ice cores are associated with relatively high (low) Rossby Wave Breaking (RWB) activity in the North Atlantic region. Both cyclonic and anticyclonic RWB patterns associated with high δ18O show filaments of strong moisture transport from the Atlantic Ocean towards Greenland. During such events, warm and wet conditions are recorded over southern, western and central part of Greenland. In the same time the cyclonic and anticyclonic RWB patterns show enhanced southward advection of cold polar air masses on their eastern side, leading to extreme cold conditions over Europe. The association between high δ18O winters in Greenland ice cores and extremely cold winters over Europe is partly explained by the modulation of the RWB frequency by the tropical Atlantic sea surface temperature forcing, as shown in recent modeling studies. We argue that δ18O from Greenland ice cores can be used as a proxy for RWB activity in the Atlantic European region and associated extreme weather and climate anomalies.


2021 ◽  
Vol 7 (22) ◽  
pp. eabc1379
Author(s):  
Pengfei Liu ◽  
Jed O. Kaplan ◽  
Loretta J. Mickley ◽  
Yang Li ◽  
Nathan J. Chellman ◽  
...  

Fire plays a pivotal role in shaping terrestrial ecosystems and the chemical composition of the atmosphere and thus influences Earth’s climate. The trend and magnitude of fire activity over the past few centuries are controversial, which hinders understanding of preindustrial to present-day aerosol radiative forcing. Here, we present evidence from records of 14 Antarctic ice cores and 1 central Andean ice core, suggesting that historical fire activity in the Southern Hemisphere (SH) exceeded present-day levels. To understand this observation, we use a global fire model to show that overall SH fire emissions could have declined by 30% over the 20th century, possibly because of the rapid expansion of land use for agriculture and animal production in middle to high latitudes. Radiative forcing calculations suggest that the decreasing trend in SH fire emissions over the past century largely compensates for the cooling effect of increasing aerosols from fossil fuel and biofuel sources.


Sign in / Sign up

Export Citation Format

Share Document