scholarly journals Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern margin of the Qinghai-Tibetan Plateau and their climatic forcing

2011 ◽  
Vol 5 (6) ◽  
pp. 3479-3516 ◽  
Author(s):  
B. Pan ◽  
G. Zhang ◽  
J. Wang ◽  
B. Cao ◽  
J. Wang ◽  
...  

Abstract. In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in 1989, 1994, 2005, and ASTER data in 2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou, Mozigou, Yanzigou, and Dagongba) in 2009. The results show that the area dominated by the 74 glaciers has shrunk by 11.3 % (29.2 km2) from 1966 to 2009. Glacier area on the eastern and western slope of the Gongga Mountains decreased by 14.1 km2 (5.5 % in 1966) and 15.1 km2 (5.9 % in 1966), respectively. The loss in glacier area and length is respectively 0.8 km2 and 1146.4 m (26.7 m yr−1) for the Hailuogou glacier, 2.1 km2 and 501.8 m (11.7 m yr−1) for the Mozigou Glacier, 0.8 km2 and 724.8 m (16.9 m yr−1) for the Yanzigou Glacier, and 2.4 km2 and 1002.3 m (23.3 m yr−1) for the Dagongba Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. During 1966–2009, the mean annual temperature over the eastern and western slope of the Gongga Mountains has been increasing by 0.21 °C/10 yr and 0.13 °C/10 yr, respectively. Moreover, it was stable in the mean annual precipitation. This evidence indicates that the warming of the climate is probably responsible for the glacier retreat in the study region.

2012 ◽  
Vol 6 (5) ◽  
pp. 1087-1101 ◽  
Author(s):  
B. T. Pan ◽  
G. L. Zhang ◽  
J. Wang ◽  
B. Cao ◽  
H. P. Geng ◽  
...  

Abstract. In order to monitor the changes of the glaciers in the Gongga Mountain region on the south-eastern margin of the Qinghai-Tibetan Plateau, 74 monsoonal temperate glaciers were investigated by comparing the Chinese Glacier Inventory (CGI), recorded in the 1960s, with Landsat MSS in 1974, Landsat TM in 1989, 1994, 2005, and ASTER data in 2009. The remote sensing data have been applied to map the glacier outline by threshold ratio images (TM4/TM5). Moreover, the glacier outlines were verified by GPS survey on four large glaciers (Hailuogou (HLG), Mozigou (MZG), Yanzigou (YZG), and Dagongba (DGB)) in 2009. The results show that the area dominated by the 74 glaciers has shrunk by 11.3% (29.2 km2) from 1966 to 2009. Glacier area on the eastern and western slopes of the Gongga Mountains decreased by 9.8% and 14.6% since 1966, respectively. The loss in glacier area and length is, respectively, 0.8 km2 and 1146.4 m for the HLG Glacier, 2.1 km2 and 501.8 m for the MZG Glacier, 0.8 km2 and 724.8 m for the YZG Glacier, and 2.4 km2 and 1002.3 m for the DGB Glacier. Decades of climate records obtained from three meteorological stations in the Gongga Mountains were analyzed to evaluate the impact of the temperature and precipitation on glacier retreat. The mean annual temperatures over the eastern and western slopes of the Gongga Mountains have been increasing by 0.34 K decade−1 and 0.24 K decade−1 (1988–2009), respectively. Moreover, mean annual precipitation has only increased by 1% in the past 50 yr. The increasing amount of precipitation could not compensate for the glacier mass loss due to the temperature increase in the Gongga Mountains. This suggests that the warming of the climate is probably also responsible for the glacier retreat in the study region. At the region scale, glacier changes were also controlled by local topographical factors.


Author(s):  
Slobodan B. Marković ◽  
Eric A. Oches ◽  
Zoran M. Perić ◽  
Tivadar Gaudenyi ◽  
Mlađen Jovanović ◽  
...  

2021 ◽  
Author(s):  
Yanghang Ren ◽  
Kun Yang ◽  
Han Wang

<p>As region that is highly sensitive to global climate change, the Tibetan Plateau (TP) experiences an intra-seasonal soil water deficient due to the reduced precipitation during the South Asia monsoon (SAM) break. Few studies have investigated the impact of the SAM break on TP ecological processes, although a number of studies have explored the effects of inter-annual and decadal climate variability. In this study, the response of vegetation activity to the SAM break was investigated. The data used are: (1) soil moisture from in situ, satellite remote sensing and data assimilation; and (2) the Normalized Difference Vegetation Index (NDVI) and Solar-Induced chlorophyll Fluorescence (SIF). We found that in the region impacted by SAM break, which is distributed in the central-eastern part of TP, photosynthesis become more active during the SAM break. And temporal variability in the photosynthesis of this region is controlled mainly by solar radiation variability and has little sensitivity to soil moisture. We adopted a diagnostic process-based modeling approach to examine the causes of enhanced plant activity during the SAM break on the central-eastern TP. Our analysis indicates that active photosynthetic behavior in the reduced precipitation is stimulated by increases in solar radiation absorbed and temperature. This study highlights the importance of sub-seasonal climate variability for characterizing the relationship between vegetation and climate.</p>


2020 ◽  
Vol 54 (11-12) ◽  
pp. 4733-4757 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Dmitry Sidorenko ◽  
Nikolay V. Koldunov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document