scholarly journals Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

2015 ◽  
Vol 9 (5) ◽  
pp. 5521-5554 ◽  
Author(s):  
F. Kauker ◽  
T. Kaminski ◽  
R. Ricker ◽  
L. Toudal-Pedersen ◽  
G. Dybkjaer ◽  
...  

Abstract. The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

2020 ◽  
Author(s):  
Weixin Zhu ◽  
Lu Zhou ◽  
Shiming Xu

<p><strong>Abstract</strong></p><p>Arctic sea ice is a critical component in the global climate system. It affects the climate system by radiating incident heat back into space and regulating ocean-atmosphere heat and momentum. Satellite altimetry such as CryoSat-2 serves as the primary approach for observing sea ice thickness. Nevertheless, the thickness retrieval with CryoSat-2 mainly depends on the height of the ice surface above the sea level, which leads to significant uncertainties over thin ice regimes. The sea ice at the north of Greenland is considered one of the oldest and thickest in the Arctic. However, during late February - early March 2018, a polynya formed north to Greenland due to extra strong southern winds. We focus on the retrieval of sea ice thickness and snow conditions with CryoSat-2 and SMOS during the formation of the polynya. Specifically, we investigate the uncertainty of CryoSat-2 and carry out inter- comparison of sea ice thickness retrieval with SMOS and CryoSat-2/SMOS synergy. Besides, further discussion of retrieval with CryoSat-2 is provided for such scenarios where the mélange of thick ice and newly formed thin ice is present.</p>


Author(s):  
Nataliya Marchenko

The 5 Russian Arctic Seas have common features, but differ significantly from each other in the sea ice regime and navigation specifics. Navigation in the Arctic is a big challenge, especially during the winter season. However, it is necessary, due to limited natural resources elsewhere on Earth that may be easier for exploitation. Therefore sea ice is an important issue for future development. We foresee that the Arctic may become ice free in summer as a result of global warming and even light yachts will be able to pass through the Eastern Passage. There have been several such examples in the last years. But sea ice is an inherent feature of Arctic Seas in winter, it is permanently immanent for the Central Arctic Basin. That is why it is important to get appropriate knowledge about sea ice properties and operations in ice conditions. Four seas, the Kara, Laptev, East Siberian, and Chukchi have been examined in the book “Russian Arctic Seas. Navigation Condition and Accidents”, Marchenko, 2012 [1]. The book is devoted to the eastern sector of the Arctic, with a description of the seas and accidents caused by heavy ice conditions. The traditional physical-geographical characteristics, information about the navigation conditions and the main sea routes and reports on accidents that occurred in the 20th century have reviewed. An additional investigation has been performed for more recent accidents and for the Barents Sea. Considerable attention has been paid to problems associated with sea ice caused by the present development of the Arctic. Sea ice can significantly affect shipping, drilling, and the construction and operation of platforms and handling terminals. Sea ice is present in the main part of the east Arctic Sea most of the year. The Barents Sea, which is strongly influenced and warmed by the North Atlantic Current, has a natural environment that is dramatically different from those of the other Arctic seas. The main difficulties with the Barents Sea are produced by icing and storms and in the north icebergs. The ice jet is the most dangerous phenomenon in the main straits along the Northern Sea Route and in Chukchi Seas. The accidents in the Arctic Sea have been classified, described and connected with weather and ice conditions. Behaviour of the crew is taken into consideration. The following types of the ice-induced accidents are distinguished: forced drift, forced overwintering, shipwreck, and serious damage to the hull in which the crew, sometimes with the help of other crews, could still save the ship. The main reasons for shipwrecks and damages are hits of ice floes (often in rather calm ice conditions), ice nipping (compression) and drift. Such investigation is important for safety in the Arctic.


Current knowledge on Arctic sea ice extent and thickness variability is reviewed, and we examine whether measurements to date provide evidence for the impact of climate change. The total Arctic ice extent has shown a small but significant reduction of (2.1 ± 0.9)% during the period 1978-87, after apparently increasing from a lower level in the early 1970s. However, open water within the pack ice limit has also diminished, so that the reduction of sea ice area is only (1.8 ± 1.2)%. This stability conceals large interannual variations and trends in individual regions of the Arctic Ocean and sub-Arctic seas, which are out of phase with one another and so have little net impact on the overall hemispheric ice extent. The maximum annual global extent (occurring during the Antarctic winter) shows a more significant decrease of 5% during 1972-87. Ice thickness distribution has been measured by submarine sonar profiling, moored upward sonars, airborne laser prohlometry, airborne electromagnetic techniques and drilling. Promising new techniques include: sonar mounted on an AUV or neutrally buoyant float; acoustic tomography or thermometry; and inference from a combination of microwave sensors. In relation to climate change, the most useful measurement has been repeated submarine sonar profiling under identical parts of the Arctic, which offers some evidence of a decline in mean ice thickness in the 1980s compared to the 1970s. The link between mean ice thickness and climatic warming is complex because of the effects of dynamics and deformation. Only fast ice responds primarily to air temperature changes and one can predict thinning of fast ice and extension of the open water season in fast ice areas. Another region of increasingly mild ice conditions is the central Greenland Sea where winter thermohaline convection is triggered by cyclic growth and melt of local young ice. In recent years convection to the bottom has slowed or ceased, possibly related to moderation of ice conditions.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vladimir V. Ivanov ◽  
Vladimir A. Alexeev ◽  
Irina Repina ◽  
Nikolay V. Koldunov ◽  
Alexander Smirnov

We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW) inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness.


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


2009 ◽  
Vol 22 (1) ◽  
pp. 165-176 ◽  
Author(s):  
R. W. Lindsay ◽  
J. Zhang ◽  
A. Schweiger ◽  
M. Steele ◽  
H. Stern

Abstract The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of −0.57 m decade−1. Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


2020 ◽  
Vol 11 (S1) ◽  
pp. 233-250 ◽  
Author(s):  
Farahnaz Fazel-Rastgar

Abstract The observed unusually high temperatures in the Arctic during recent decades can be related to the Arctic sea ice declines in summer 2007, 2012 and 2016. Arctic dipole formation has been associated with all three heatwaves of 2007, 2012 and 2016 in the Canadian Arctic. Here, the differences in weather patterns are investigated and compared with normal climatological mean (1981–2010) structures. This study examines the high-resolution datasets from the North American Regional Reanalysis model. During the study periods, the north of Alaska has been affected by the low-pressure tongue. The maximum difference between Greenland high-pressure centre and Alaska low-pressure tongue for the summers of 2012, 2016 and 2007 are 8 hPa, 7 hPa and 6 hPa, respectively, corresponding and matching to the maximum summer surface Canadian Arctic temperature records. During anomalous summer heatwaves, low-level wind, temperatures, total clouds (%) and downward radiation flux at the surface are dramatically changed. This study shows the surface albedo has been reduced over most parts of the Canadian Arctic Ocean during the mentioned heatwaves (∼5–40%), with a higher change (specifically in the eastern Canadian Arctic region) during summer 2012 in comparison with summer 2016 and summer 2007, agreeing with the maximum surface temperature and sea ice decline records.


2016 ◽  
Author(s):  
R. L. Tilling ◽  
A. Ridout ◽  
A. Shepherd

Abstract. Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness in near real time (NRT), and analyse this data for one sea ice growth season from October 2014 to April 2015. We show that this NRT sea ice thickness product is of comparable accuracy to that produced using the final release CryoSat-2 data, with an average thickness difference of 5 cm, demonstrating that the satellite orbit is not a critical factor in determining sea ice freeboard. In addition, the CryoSat-2 fast delivery product also provides measurements of Arctic sea ice thickness within three days of acquisition by the satellite, and a measurement is delivered, on average, within 10, 7 and 6 km of each location in the Arctic every 2, 14 and 28 days respectively. The CryoSat-2 NRT sea ice thickness dataset provides an additional constraint for seasonal predictions of Arctic climate change, and will allow industries such as tourism and transport to navigate the polar oceans with safety and care.


2021 ◽  
Author(s):  
Vladimir Semenov ◽  
Tatiana Matveeva

<p>Global warming in the recent decades has been accompanied by a rapid recline of the Arctic sea ice area most pronounced in summer (10% per decade). To understand the relative contribution of external forcing and natural variability to the modern and future sea ice area changes, it is necessary to evaluate a range of long-term variations of the Arctic sea ice area in the period before a significant increase in anthropogenic emissions of greenhouse gases into the atmosphere. Available observational data on the spatiotemporal dynamics of Arctic sea ice until 1950s are characterized by significant gaps and uncertainties. In the recent years, there have appeared several reconstructions of the early 20<sup>th</sup> century Arctic sea ice area that filled the gaps by analogue methods or utilized combined empirical data and climate model’s output. All of them resulted in a stronger that earlier believed negative sea ice area anomaly in the 1940s concurrent with the early 20<sup>th</sup> century warming (ETCW) peak. In this study, we reconstruct the monthly average gridded sea ice concentration (SIC) in the first half of the 20th century using the relationship between the spatiotemporal features of SIC variability, surface air temperature over the Northern Hemisphere extratropical continents, sea surface temperature in the North Atlantic and North Pacific, and sea level pressure. In agreement with a few previous results, our reconstructed data also show a significant negative anomaly of the Arctic sea ice area in the middle of the 20th century, however with some 15% to 30% stronger amplitude, about 1.5 million km<sup>2</sup> in September and 0.7 million km<sup>2</sup> in March. The reconstruction demonstrates a good agreement with regional Arctic sea ice area data when available and suggests that ETWC in the Arctic has been accompanied by a concurrent sea ice area decline of a magnitude that have been exceeded only in the beginning of the 21<sup>st</sup> century.</p>


Sign in / Sign up

Export Citation Format

Share Document