scholarly journals Modeling population dynamics of solitary bees in relation to habitat quality

Web Ecology ◽  
2001 ◽  
Vol 2 (1) ◽  
pp. 57-64 ◽  
Author(s):  
K. Ulbrich ◽  
K. Seidelmann

Abstract. To understand associations between habitat, individual behaviour, and population development of solitary bees we developed an individual-based model. This model is based on field observations of Osmia rufa (L) (Apoideae: Megachilidae) and describes population dynamics of solitary bees. Model rules are focused on maternal investment, in particular on the female’s individual decisions about sex and size of progeny. In the present paper, we address the effect of habitat quality on population size and sex ratio. We examine how food availability and the risk of parasitism influence long-term population development. It can be shown how population properties result from individual maternal investment which is described as a functional response to fluctuations of environmental conditions. We found that habitat quality can be expressed in terms of cell construction time. This interface factor influences the rate of open cell parasitism as the risk for a brood cell to be parasitized is positively correlated with the time of its construction. Under conditions of scarce food and under resulting long provision times even low parasitism rates lead to a high extinction risk of the population, whereas in rich habitats probabilities of extinction are low even for high rates of parasitism. For a given level of food and parasitism there is an optimum time for cell construction which minimizes the extinction risk of the population. Model results demonstrate that under fluctuating environmental conditions, decreasing habitat quality leads to a decrease in population size but also to rapid shifts in sex ratio.

Author(s):  
Hichami Nawal ◽  
MOHAMMED ZNARI

The endangered Moorish tortoise Testudo graeca is the unique terrestrial chelonian species in North-west Africa. In west-central Morocco, the endemic subspecies, the Souss valley tortoise T. g. soussensis, occupies semi-arid to arid low-quality habitats, and is subject to serious threats. A long-term mark-recapture programme from 2001 to 2012 allowed estimating population size and structure, sex ratio, and survivorship in one of the well-known populations in a degraded and overgrazed arid steppe-land of west-central Morocco. Spring population size considerably decreased to more than half in less than 10 years, with a mean density lower than 3 ind.ha-1 in 2012 compared to its last known density estimat-ed in 2003. In spring 2012, the population structure exhibited an unbalanced male-biased sex ratio (61:39) and a scarcity of juveniles (<5%). We identified five major conservation problems in the study area: (i) habitat destruction and overgrazing; (ii) over-collecting of tortoises for pet trade , iii) direct dis-turbance; iv) tortoise handling mostly for field research, and v) increased extinction risk due to the small population size. We carried out a population viability analysis using the VORTEX software based on published and obtained data on population and life history parameters. With no management action, the population will go extinct during the forthcoming 40 years after the last estimate. The most efficient management option for a long-term persistence of the population would be reducing the nest and neo-nate mortality by 90%. To attenuate the impact of the threatening factors, we developed a management plan that includes population reinforcement and habitat restoration options. 


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yashuai Zhang ◽  
Fang Wang ◽  
Zhenxia Cui ◽  
Min Li ◽  
Xia Li ◽  
...  

Abstract Background One of the most challenging tasks in wildlife conservation and management is clarifying which and how external and intrinsic factors influence wildlife demography and long-term viability. The wild population of the Crested Ibis (Nipponia nippon) has recovered to approximately 4400, and several reintroduction programs have been carried out in China, Japan and Korea. Population viability analysis on this endangered species has been limited to the wild population, showing that the long-term population growth is restricted by the carrying capacity and inbreeding. However, gaps in knowledge of the viability of the reintroduced population and its drivers in the release environment impede the identification of the most effective population-level priorities for aiding in species recovery. Methods The field monitoring data were collected from a reintroduced Crested Ibis population in Ningshan, China from 2007 to 2018. An individual-based VORTEX model (Version 10.3.5.0) was used to predict the future viability of the reintroduced population by incorporating adaptive patterns of ibis movement in relation to catastrophe frequency, mortality and sex ratio. Results The reintroduced population in Ningshan County is unlikely to go extinct in the next 50 years. The population size was estimated to be 367, and the population genetic diversity was estimated to be 0.97. Sensitivity analysis showed that population size and extinction probability were dependent on the carrying capacity and sex ratio. The carrying capacity is the main factor accounting for the population size and genetic diversity, while the sex ratio is the primary factor responsible for the population growth trend. Conclusions A viable population of the Crested Ibis can be established according to population viability analysis. Based on our results, conservation management should prioritize a balanced sex ratio, high-quality habitat and low mortality.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Abeysinghe Mudiyanselage Prabodha Sammani ◽  
Dissanayaka Mudiyanselage Saman Kumara Dissanayaka ◽  
Leanage Kanaka Wolly Wijayaratne ◽  
William Robert Morrison

Abstract The almond moth Cadra cautella (Walker), a key pest of storage facilities, is difficult to manage using synthetic chemicals. Pheromone-based management methods remain a high priority due to advantages over conventional management practices, which typically use insecticides. Cadra cautella females release a blend of pheromone including (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA). The effect of these components on mating of C. cautella and how response varies with the population density and sex ratio remain unknown. In this study, the mating status of C. cautella was studied inside mating cages under different ratios of ZETA and ZTA diluted in hexane and at different population sizes either with equal or unequal sex ratio. The lowest percentage of mated females (highest mating disruption [MD] effects), corresponding to roughly 12.5%, was produced by a 5:1 and 3.3:1 ratio of ZETA:ZTA. Populations with equal sex ratio showed the lowest percentage of mated females, at 20% and 12.5% under lower and higher density, respectively. The next lowest percentage of mated females was produced when the sex ratio was set to 1: 2 and 2:1 male:female, with just 25% and 22.5% of moths mated, respectively. This study shows that mating status of C. cautella is influenced by ZETA:ZTA ratio, sex ratio, and population size. This current knowledge would have useful implications for mating disruption programs.


2010 ◽  
Vol 20 (2) ◽  
pp. 214-214 ◽  
Author(s):  
PAUL F. DONALD ◽  
GRAEME M. BUCHANAN ◽  
NIGEL J. COLLAR ◽  
YILMA DELLELEGN ABEBE ◽  
MERID N. GABREMICHAEL ◽  
...  

Plant Ecology ◽  
2008 ◽  
Vol 200 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Grzegorz Iszkuło ◽  
Anna K. Jasińska ◽  
Marian J. Giertych ◽  
Adam Boratyński

Author(s):  
Xueyan Yang ◽  
Wanxin Li ◽  
Wen Jing ◽  
Chezhuo Gao ◽  
Rui Li ◽  
...  

AbstractThis article analyzes the population dynamics in northwestern China from roughly 2010 to 2020. The area’s dynamics showed a slow, stable increase in population size, a stable increase in the population of non-Han ethnic groups, which increased at a more rapidly than the Han population, and population rejuvenation coupled with a population structure that aged. The biological sex structure fluctuated within a balanced range in northwestern China. Urbanization advanced in northwestern China, throughout this period, but the area’s level of urbanization is still significantly lower than the average level of urbanization nationally.


Crustaceana ◽  
2021 ◽  
Vol 94 (4) ◽  
pp. 413-429
Author(s):  
Ye Ji Lee ◽  
Won Gyu Park

Abstract The population dynamics of Stenothoe valida Dana, 1852 were studied at Cheongsapo beach of Busan, Republic of Korea, from March 2019 to March 2020. Sampling was conducted once a month at low tide during spring tides. Specimens were grouped by the cephalic length at 0.025 mm intervals, and classified into four categories: females, ovigerous females, males and juveniles. The sex ratio, defined as females : total males + females, exceeded 0.5 during most of the study period. Brood size was significantly coupled with ovigerous female size. Two to four cohorts appeared at each study period. New cohorts occurred at almost every sampling except in the samples Jun-2, and Nov-2. Life span was estimated at 1-2 months. The juvenile ratio, the ratio of ovigerous females, and the recruitment rate estimated by FiSAT were commonly high in summer and winter. The life history of S. valida was not coupled with water temperature, but had a strong seasonal pattern.


2016 ◽  
Vol 76 (1) ◽  
pp. 45-54 ◽  
Author(s):  
K. A. Silva ◽  
J. M. F. F. Santos ◽  
J. R. Andrade ◽  
E. N. Lima ◽  
U. P. Albuquerque ◽  
...  

Abstract Variation in annual rainfall is considered the most important factor influencing population dynamics in dry environments. However, different factors may control population dynamics in different microhabitats. This study recognizes that microhabitat variation may attenuate the influence of climatic seasonality on the population dynamics of herbaceous species in dry forest (Caatinga) areas of Brazil. We evaluated the influence of three microhabitats (flat, rocky and riparian) on the population dynamics of four herbaceous species (Delilia biflora, Commelina obliqua, Phaseolus peduncularis and Euphorbia heterophylla) in a Caatinga (dry forest) fragment at the Experimental Station of the Agronomic Research Institute of Pernambuco in Brazil, over a period of three years. D. biflora, C. obliqua and P. peduncularis were found in all microhabitats, but they were present at low densities in the riparian microhabitat. There was no record of E. heterophylla in the riparian microhabitat. Population size, mortality rates and natality rates varied over time in each microhabitat. This study indicates that different establishment conditions influenced the population size and occurrence of the four species, and it confirms that microhabitat can attenuate the effect of drought stress on mortality during the dry season, but the strength of this attenuator role may vary with time and species.


2014 ◽  
Vol 104 (4) ◽  
pp. 418-431 ◽  
Author(s):  
M. Soufbaf ◽  
Y. Fathipour ◽  
J. Karimzadeh ◽  
M.P. Zalucki

AbstractTo understand the effect of plant availability/structure on the population size and dynamics of insects, a specialist herbivore in the presence of two of its parasitoids was studied in four replicated time-series experiments with high and low plant availabilities; under the latter condition, the herbivore suffered from some periods of resource limitation (starvation) and little plant-related structural refuges. Population dynamics of the parasitoid Cotesia vestalis was governed mainly by the delayed density-dependent process under both plant setups. The parasitoid, Diadegma semiclausum, under different plant availabilities and different coexistence situations (either +competitor or –competitor) showed dynamics patterns that were governed mainly by the delayed density process (significant lags at weeks 2–4). Both the competing parasitoids did not experience beneficial or costly interferences from each other in terms of their own population size when the plant resource was limited. Variation in the Plutella xylostella population under limited plant availability is higher than that under the other plant setup. For both parasitoids, under limited plant setup, the extinction risk was lower when parasitoids were engaged in competition, while under the unlimited plant setup, the mentioned risk was higher when parasitoids competed. In this situation, parasitoids suffered from two forces, competition and higher escaped hosts.


Sign in / Sign up

Export Citation Format

Share Document