scholarly journals Estimating the wake deflection downstream of a wind turbine in different atmospheric stabilities: An LES study

Author(s):  
Lukas Vollmer ◽  
Gerald Steinfeld ◽  
Detlev Heinemann ◽  
Martin Kühn

Abstract. An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty to the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as an uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. A control of the wake position in a highly convective environment is therefore not recommended.

2016 ◽  
Vol 1 (2) ◽  
pp. 129-141 ◽  
Author(s):  
Lukas Vollmer ◽  
Gerald Steinfeld ◽  
Detlev Heinemann ◽  
Martin Kühn

Abstract. An intentional yaw misalignment of wind turbines is currently discussed as one possibility to increase the overall energy yield of wind farms. The idea behind this control is to decrease wake losses of downstream turbines by altering the wake trajectory of the controlled upwind turbines. For an application of such an operational control, precise knowledge about the inflow wind conditions, the magnitude of wake deflection by a yawed turbine and the propagation of the wake is crucial. The dependency of the wake deflection on the ambient wind conditions as well as the uncertainty of its trajectory are not sufficiently covered in current wind farm control models. In this study we analyze multiple sources that contribute to the uncertainty of the estimation of the wake deflection downstream of yawed wind turbines in different ambient wind conditions. We find that the wake shapes and the magnitude of deflection differ in the three evaluated atmospheric boundary layers of neutral, stable and unstable thermal stability. Uncertainty in the wake deflection estimation increases for smaller temporal averaging intervals. We also consider the choice of the method to define the wake center as a source of uncertainty as it modifies the result. The variance of the wake deflection estimation increases with decreasing atmospheric stability. Control of the wake position in a highly convective environment is therefore not recommended.


2017 ◽  
Vol 2 (2) ◽  
pp. 477-490 ◽  
Author(s):  
Niko Mittelmeier ◽  
Julian Allin ◽  
Tomas Blodau ◽  
Davide Trabucchi ◽  
Gerald Steinfeld ◽  
...  

Abstract. For offshore wind farms, wake effects are among the largest sources of losses in energy production. At the same time, wake modelling is still associated with very high uncertainties. Therefore current research focusses on improving wake model predictions. It is known that atmospheric conditions, especially atmospheric stability, crucially influence the magnitude of those wake effects. The classification of atmospheric stability is usually based on measurements from met masts, buoys or lidar (light detection and ranging). In offshore conditions these measurements are expensive and scarce. However, every wind farm permanently produces SCADA (supervisory control and data acquisition) measurements. The objective of this study is to establish a classification for the magnitude of wake effects based on SCADA data. This delivers a basis to fit engineering wake models better to the ambient conditions in an offshore wind farm. The method is established with data from two offshore wind farms which each have a met mast nearby. A correlation is established between the stability classification from the met mast and signals within the SCADA data from the wind farm. The significance of these new signals on power production is demonstrated with data from two wind farms with met mast and long-range lidar measurements. Additionally, the method is validated with data from another wind farm without a met mast. The proposed signal consists of a good correlation between the standard deviation of active power divided by the average power of wind turbines in free flow with the ambient turbulence intensity (TI) when the wind turbines were operating in partial load. It allows us to distinguish between conditions with different magnitudes of wake effects. The proposed signal is very sensitive to increased turbulence induced by neighbouring turbines and wind farms, even at a distance of more than 38 rotor diameters.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 117 ◽  
Author(s):  
Mohammad Al-Addous ◽  
Mustafa Jaradat ◽  
Aiman Albatayneh ◽  
Johannes Wellmann ◽  
Sahil Al Hmidan

Securing energy supply and diversifying the energy sources is one of the main goals of energy strategy for most countries. Due to climate change, wind energy is becoming increasingly important as a method of CO2-free energy generation. In this paper, a wind farm with five turbines located in Jerash, a city in northern Jordan, has been designed and analyzed. Optimization of wind farms is an important factor in the design stage to minimize the cost of wind energy to become more competitive and economically attractive. The analyses have been carried out using the WindFarm software to examine the significance of wind turbines’ layouts (M, straight and arch shapes) and spacing on the final energy yield. In this research, arranging the turbines facing the main wind direction with five times rotor diameter distance between each turbine has been simulated, and has resulted in 22.75, 22.87 and 21.997 GWh/year for the M shape, Straight line and Arch shape, respectively. Whereas, reducing the distance between turbines to 2.5 times of the rotor diameter (D) resulted in a reduction of the wind farm energy yield to 22.68, 21.498 and 21.5463 GWh/year for the M shape, Straight line and Arch shape, respectively. The energetic efficiency gain for the optimized wind turbines compared to the modeled layouts regarding the distances between the wind turbines. The energetic efficiency gain has been in the range between 8.9% for 5D (rotor diameter) straight layout to 15.9% for 2.5D straight layout.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 693
Author(s):  
Anna Dóra Sæþórsdóttir ◽  
Margrét Wendt ◽  
Edita Tverijonaite

The interest in harnessing wind energy keeps increasing globally. Iceland is considering building its first wind farms, but its landscape and nature are not only a resource for renewable energy production; they are also the main attraction for tourists. As wind turbines affect how the landscape is perceived and experienced, it is foreseeable that the construction of wind farms in Iceland will create land use conflicts between the energy sector and the tourism industry. This study sheds light on the impacts of wind farms on nature-based tourism as perceived by the tourism industry. Based on 47 semi-structured interviews with tourism service providers, it revealed that the impacts were perceived as mostly negative, since wind farms decrease the quality of the natural landscape. Furthermore, the study identified that the tourism industry considered the following as key factors for selecting suitable wind farm sites: the visibility of wind turbines, the number of tourists and tourist attractions in the area, the area’s degree of naturalness and the local need for energy. The research highlights the importance of analysing the various stakeholders’ opinions with the aim of mitigating land use conflicts and socioeconomic issues related to wind energy development.


2021 ◽  
pp. 0309524X2199245
Author(s):  
Kawtar Lamhour ◽  
Abdeslam Tizliouine

The wind industry is trying to find tools to accurately predict and know the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique used to determine critical subsystems, causes and consequences of wind turbines. FMECA has been widely used by manufacturers of wind turbine assemblies to analyze, evaluate and prioritize potential/known failure modes. However, its actual implementation in wind farms has some limitations. This paper aims to determine the most critical subsystems, causes and consequences of the wind turbines of the Moroccan wind farm of Amougdoul during the years 2010–2019 by applying the maintenance model (FMECA), which is an analysis of failure modes, effects and criticality based on a history of failure modes occurred by the SCADA system and proposing solutions and recommendations.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1486 ◽  
Author(s):  
Nicolas Tobin ◽  
Adam Lavely ◽  
Sven Schmitz ◽  
Leonardo P. Chamorro

The dependence of temporal correlations in the power output of wind-turbine pairs on atmospheric stability is explored using theoretical arguments and wind-farm large-eddy simulations. For this purpose, a range of five distinct stability regimes, ranging from weakly stable to moderately convective, were investigated with the same aligned wind-farm layout used among simulations. The coherence spectrum between turbine pairs in each simulation was compared to theoretical predictions. We found with high statistical significance (p < 0.01) that higher levels of atmospheric instability lead to higher coherence between turbines, with wake motions reducing correlations up to 40%. This is attributed to higher dominance of atmospheric motions over wakes in strongly unstable flows. Good agreement resulted with the use of an empirical model for wake-added turbulence to predict the variation of turbine power coherence with ambient turbulence intensity (R 2 = 0.82), though other empirical relations may be applicable. It was shown that improperly accounting for turbine–turbine correlations can substantially impact power variance estimates on the order of a factor of 4.


SIMULATION ◽  
2021 ◽  
pp. 003754972110286
Author(s):  
Eduardo Pérez

Wind turbines experience stochastic loading due to seasonal variations in wind speed and direction. These harsh operational conditions lead to failures of wind turbines, which are difficult to predict. Consequently, it is challenging to schedule maintenance actions that will avoid failures. In this article, a simulation-driven online maintenance scheduling algorithm for wind farm operational planning is derived. Online scheduling is a suitable framework for this problem since it integrates data that evolve over time into the maintenance scheduling decisions. The computational study presented in this article compares the performance of the simulation-driven online scheduling algorithm against two benchmark algorithms commonly used in practice: scheduled maintenance and condition-based monitoring maintenance. An existing discrete event system specification simulation model was used to test and study the benefits of the proposed algorithm. The computational study demonstrates the importance of avoiding over-simplistic assumptions when making maintenance decisions for wind farms. For instance, most literature assumes maintenance lead times are constant. The computational results show that allowing lead times to be adjusted in an online fashion improves the performance of wind farm operations in terms of the number of turbine failures, availability capacity, and power generation.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


2021 ◽  
Vol 6 ◽  
pp. 20-25
Author(s):  
Alexey Bogatyrev

Wind turbines and wind farms can be connected to the major electricity distribution system. This paper presents the research results on synchronization of wind farm power supply into the utility grid depending on parameters of the grid at the moment. Measurement time gets synchronized with the external time signal delivered from a navigating system like GLONASS. This can help eliminate antiphase operation of individual wind turbines. Connection diagrams and the whole methodology presented in this paper aim to make wind farm power supply into the grid more effective and loss-eliminating.


Sign in / Sign up

Export Citation Format

Share Document