scholarly journals Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1805 ◽  
Author(s):  
Mohsen Vahidzadeh ◽  
Corey D. Markfort

Power curves are used to model power generation of wind turbines, which in turn is used for wind energy assessment and forecasting total wind farm power output of operating wind farms. Power curves are based on ideal uniform inflow conditions, however, as wind turbines are installed in regions of heterogeneous and complex terrain, the effect of non-ideal operating conditions resulting in variability of the inflow must be considered. We propose an approach to include turbulence, yaw error, air density, wind veer and shear in the prediction of turbine power by using high resolution wind measurements. In this study, two modified power curves using standard ten-minute wind speed and high resolution one-second data along with a derived power surface were tested and compared to the standard operating curve for a 2.5 MW horizontal axis wind turbine. Data from supervisory control and data acquisition (SCADA) system along with wind speed measurements from a nacelle-mounted sonic anemometer and wind speed measurements from a nearby meteorological tower are used in the models. The results show that all of the proposed models perform better than the standard power curve while the power surface results in the most accurate power prediction.


2013 ◽  
Vol 336-338 ◽  
pp. 1114-1117 ◽  
Author(s):  
Ying Zhi Liu ◽  
Wen Xia Liu

This paper elaborates the effect of wind speed on the output power of the wind farms at different locations. It also describes the correction of the power curve and shows the comparison chart of the standard power curve and the power curve after correction. In China's inland areas, wind farms altitude are generally higher, the air density is much different from the standard air density. The effect of air density on wind power output must be considered during the wind farm design.


2013 ◽  
Vol 380-384 ◽  
pp. 3370-3373 ◽  
Author(s):  
Li Yang Liu ◽  
Jun Ji Wu ◽  
Shao Liang Meng

With the massive development and application of wind energy, wind power is having an increasing proportion in power grid. The changes of the wind speed in a wind farm will lead to fluctuations in the power output which would affect the stable operation of the power grid. Therefore the research of the characteristics of wind speed has become a hot topic in the field of wind energy. In the paper, the wind speed at the wind farm was simulated in a combination of wind speeds by which wind speed was decomposed of four components including basic wind, gust wind, stochastic wind and gradient wind which denote the regularity, the mutability, the gradual change and the randomness of a natural wind respectively. The model is able to reflect the characteristics of a real wind, easy for engineering simulation and can also estimate the wind energy of a wind farm through the wind speed and wake effect model. This paper has directive significance in the estimation of wind resource and the layout of wind turbines in wind farms.


2014 ◽  
Vol 543-547 ◽  
pp. 647-652
Author(s):  
Ye Zhou Hu ◽  
Lin Zhang ◽  
Pai Liu ◽  
Xin Yuan Liu ◽  
Ming Zhou

Large scale wind power penetration has a significant impact on the reliability of the electric generation systems. A wind farm consists of a large number of wind turbine generators (WTGs). A major difficulty in modeling wind farms is that the WTG not have an independent capacity distribution due to the dependence of the individual turbine output on the same energy source, the wind. In this paper, a model of the wind farm output power considering multi-wake effects is established according to the probability distribution of the wind speed and the characteristic of the wind generator output power: based on the simple Jenson wake effect model, the wake effect with wind speed sheer model and the detail wake effect model with the detail shade areas of the upstream wind turbines are discussed respectively. Compared to the individual wake effect model, this model takes the wind farm as a whole and considers the multi-wakes effect on the same unit. As a result the loss of the velocity inside the wind farm is considered more exactly. Furthermore, considering the features of sequentially and self-correlation of wind speed, an auto-regressive and moving average (ARMA) model for wind speed is built up. Also the reliability model of wind farm is built when the output characteristics of wind power generation units, correlation of wind speeds among different wind farms, outage model of wind power generation units, wake effect of wind farm and air temperature are considered. Simulation results validate the effectiveness of the proposed models. These models can be used to research the reliability of power grid containing wind farms, wind farm capacity credit as well as the interconnection among wind farms


2020 ◽  
pp. 0309524X1990100
Author(s):  
Cherif Khelifi ◽  
Fateh Ferroudji

The output wind power curve versus wind speed is the most important characterization parameter of wind turbines. It allows quantifying and analyzing the design performances of wind turbines, monitoring its database, and controlling the operation modes and manufacturing products. Wind power curve can be used to select the proper rotor size to estimate the potential of wind energy at candidate wind sites and to assess the control device of the operating conditions. Developing model strategies for wind farms has the basic objectives such as the optimization of wind power produced and the minimization of dynamic loads to provide the best quality of output wind power at reasonable cost. Optimal design of wind turbines requires maximum-closing to the cubical output wind power curve despite technical and economic considerations. This study aims to determine the design wind speed of a wind turbine based on modeling-optimization of the output wind power curve under certain working conditions. The procedure is applied to a unit wind turbine in Gamesa wind farm (G52/850, 10.2 MW, http://www.thewindpower.net ) connected to an electrical grid located in south-west Algeria and extrapolated for other windy sites in Algeria. From simulation results, the design wind speed to inlet wind speed ratio [Formula: see text] increased from 0.35 to 7.68 once [Formula: see text] increased from 0.001 to 2.9999. Consequently, the output wind power predicted an increase of about 17.7% and an annual specific wind energy factor of about 2.55%–4% than nominal value given by the manufacturer, reducing the unit average cost of the electricity, generated by wind farms, by about 18.75%.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


2020 ◽  
Vol 9 (2) ◽  
pp. 177-187
Author(s):  
Salah Marih ◽  
Leila Ghomri ◽  
Benaissa Bekkouche

This work presents an assessment of the wind potential and a design methodology for a 10 MW wind farm in the Arzew industrial region, located in northwest Algeria, to improve the quality of service of the electricity grid and increase Algeria's participation in the use of renewable energy. The hourly wind data of 10 years (2005-2015) that correspond to the wind potential of the site were analyzed, such as: dominant wind directions, probability distribution, Weibull parameters, mean wind speed and power potential. The site has a mean annual wind speed of 4.46 m/s at 10m height, and enough space to locate the wind turbines. A comparative study was carried out between four wind turbine technologies to improve the site's efficiency and select the appropriate technology: PowerWind 56/ 900 kW, Nordex N50/800 kW, Vestas V50/850 kW, NEG-Micon 44/750 kW. The estimate of the energy produced using WAsP software and the choice of the optimal architectural configuration for wind turbines installation was confirmed. A techno-economic and environmental study was carried out by HOMER software, to choose the model that produces the maximum annual net energy with a competitive cost in the global wind energy market, $ 0.068/kWh, and that provides clean energy with a reduced emission of polluting gases. Finally, this work provides a good indicator for the construction of a wind farm in Arzew. ©2020. CBIORE-IJRED. All rights reserved


Author(s):  
Onur Koşar ◽  
Mustafa Arif Özgür

Kütahya is considered as a candidate region for a wind farm investment due to Turkey's 2023 energy targets and its proximity to other wind farm investments. In this study, two years of wind data collected from a hill near the Evliya Çelebi Campus of Kütahya Dumlupınar University was used to evaluate the wind farm potential of Kütahya. First, the wind speed, wind direction, wind shear, turbulence intensity and wind speed ramp characteristics were determined. Second, the WAsP software was used to create a wind atlas for the region. Three sites with strong wind potential were evaluated. A techno-economic analysis was conducted using five types of wind turbines selected from the WAsP database. Third, optimization of a wind farm layout was conducted by considering different hub height options for 14 commercial wind turbines using MATLAB software. It was shown theoretically that a wind farm with a power capacity of 25 MW can operate with a capacity factor of 35%. However, due to the relatively high topographical ruggedness index on the wind farm site, the calculated value for the capacity factor could not be reached in a real-life application.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Lihui Guo ◽  
Hao Bai

With the increasing penetration of wind power, the randomness and volatility of wind power output would have a greater impact on safety and steady operation of power system. In allusion to the uncertainty of wind speed and load demand, this paper applied box set robust optimization theory in determining the maximum allowable installed capacity of wind farm, while constraints of node voltage and line capacity are considered. Optimized duality theory is used to simplify the model and convert uncertainty quantities in constraints into certainty quantities. Under the condition of multi wind farms, a bilevel optimization model to calculate penetration capacity is proposed. The result of IEEE 30-bus system shows that the robust optimization model proposed in the paper is correct and effective and indicates that the fluctuation range of wind speed and load and the importance degree of grid connection point of wind farm and load point have impact on the allowable capacity of wind farm.


2011 ◽  
Vol 347-353 ◽  
pp. 2342-2346
Author(s):  
Rong Fu ◽  
Bao Yun Wang ◽  
Wan Peng Sun

With increasing installation capacity and wind farms penetration, wind power plays more important role in power systems, and the modeling of wind farms has become an interesting research topic. In this paper, a coherency-based equivalent model has been discussed for the doubly fed induction generator (DFIG). Firstly, the dynamic models of wind turbines, DFIG and the mechanisms are briefly introduced. Some existing dynamic equivalent methods such as equivalent wind model, variable speed wind turbine model, parameter identification method and modal equivalent method to be used in wind farm aggregation are discussed. Then, considering wind power fluctuations, a new equivalent model of a wind farm equipped with doubly-fed induction generators is proposed to represent the interactions of the wind farm and grid. The method proposed is based on aggregating the coherent group wind turbines into an equivalent one. Finally, the effectiveness of the equivalent model is demonstrated by comparison with the wind farm response obtained from the detailed model. The dynamic simulations show that the present model can greatly reduce the computation time and model complexity.


Sign in / Sign up

Export Citation Format

Share Document