Analysis and Modifications of Turbulence Models for Wind Turbine Wake Simulations in Atmospheric Boundary Layers

2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Enrico G. A. Antonini ◽  
David A. Romero ◽  
Cristina H. Amon

Computational fluid dynamics (CFD) simulations of wind turbine wakes are strongly influenced by the choice of the turbulence model used to close the Reynolds-averaged Navier-Stokes (RANS) equations. A wrong choice can lead to incorrect predictions of the velocity field characterizing the wind turbine wake and, consequently, to an incorrect power estimation for wind turbines operating downstream. This study aims to investigate the influence of different turbulence models, namely the k–ε, k–ω, SSTk–ω, and Reynolds stress models (RSM), on the results of CFD wind turbine simulations. Their influence was evaluated by comparing the CFD results with the publicly available experimental measurements of the velocity field and turbulence quantities from the Sexbierum and Nibe wind farms. Consistent turbulence model constants were proposed for atmospheric boundary layer (ABL) and wake flows according to previous literature and appropriate experimental observations, and modifications of the derived turbulence model constants were also investigated in order to improve agreement with experimental data. The results showed that the simulations using the k–ε and k–ω turbulence models consistently overestimated the velocity and turbulence quantities in the wind turbine wakes, whereas the simulations using the shear-stress transport (SST) k–ω and RSMs could accurately match the experimental data. Results also showed that the predictions from the k–ε and k–ω turbulence models could be improved by using the modified set of turbulence coefficients.

Author(s):  
Enrico G. A. Antonini ◽  
David A. Romero ◽  
Cristina H. Amon

Computational Fluid Dynamics (CFD) simulations of wind turbine wakes are strongly influenced by the choice of the turbulence model used to close the Reynolds-averaged Navier-Stokes (RANS) equations. A wrong choice can lead to incorrect predictions of the velocity field characterizing the wind turbine wake, and consequently to an incorrect power estimation for wind turbines operating downstream. This study aims to investigate the influence of different turbulence models on the results of CFD wind turbine simulations. In particular, the k–ε, k–ω, SSTk–ω, and Reynolds stress models are used to close the RANS equations and their influence on the CFD simulations is evaluated from the flow field generated downstream a stand-alone wind turbine. The assessment of the turbulence models was conducted by comparing the CFD results with publicly available experimental measurements of the flow field from the Sexbierum wind farm. Consistent turbulence model constants were proposed for atmospheric boundary layer and wake flows according to previous literature and appropriate experimental observations. Modifications of the derived turbulence model constants were also investigated in order to improve agreement with experimental data. The results showed that the simulations using the k–ε and k–ω turbulence models consistently overestimated the velocity in the wind turbine wakes. On the other hand, the simulations using the SSTk–ω and Reynolds stress models could accurately capture the velocity in the wake of the wind turbine. Results also showed that the predictions from the k–ε and k–ω turbulence models could be improved by using the modified set of turbulence coefficients.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4430
Author(s):  
Yuan Li ◽  
Zengjin Xu ◽  
Zuoxia Xing ◽  
Bowen Zhou ◽  
Haoqian Cui ◽  
...  

Increasing wind power generation has been introduced into power systems to meet the renewable energy targets in power generation. The output efficiency and output power stability are of great importance for wind turbines to be integrated into power systems. The wake effect influences the power generation efficiency and stability of wind turbines. However, few studies consider comprehensive corrections in an aerodynamic model and a turbulence model, which challenges the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model, thus affecting wind power integration into power systems. To tackle this challenge, this paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic model, which is established by blade element momentum aerodynamic theory and an improved Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term, regulating parameters and reducing the dissipation term, is added into the SST k-ω turbulence model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly improve computational efficiency and make results smoother. Simulation results of the velocity field and turbulent field with the proposed approach are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed approach. The variation law of the expansion effect and the double-hump effect are also given.


2021 ◽  
Author(s):  
Ingrid Neunaber ◽  
Joachim Peinke ◽  
Martin Obligado

Abstract. Within the energy transition, more and more wind turbines are clustered in big wind farms, often offshore. Therefore, an optimal positioning of the wind turbines is crucial to optimize both the annual power production and the maintenance time. Good knowledge of the wind turbine wake and the turbulence within is thus important. However, although wind turbine wakes have been subject to various studies, they are still not fully understood. One possibility to improve the comprehension is to look into the modeling of bluff body wakes. These wakes have been the subject of intensive study for decades, and by means of the scaling behavior of the centerline mean velocity deficit, the nature of the turbulence inside a wake can be classified. In this paper, we introduce the models for equilibrium and non-equilibrium turbulence from classical wake theory as introduced by A. Townsend and W. George, and we test whether the requirements are fulfilled in the wake of a wind turbine. Finally, we apply the theory to characterize the wind turbine wake, and we compare the results to the Jensen and the Bastankhah-Porté-Agel model. We find that the insight into the classical bluff body wake can be used to further improve the wind turbine wake models. Particularly, the classical bluff body wake models perform better than the wind turbine wake models due to the presence of a virtual origin in the scalings, and we demonstrate the possibility of improving the wind turbine wake models by implementing this parameter. We also see how the dissipation changes across the wake which is important to model wakes within wind farms correctly.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.


2008 ◽  
Vol 32 (5) ◽  
pp. 459-475 ◽  
Author(s):  
A. Duckworth ◽  
R.J. Barthelmie

This article discusses the application of widely used, state of the art, wake models, focusing on the Ainslie [1], Katic [2] and Larsen [3] models, breaking these down and explaining the individual, integral components. Models used to predict the turbulence intensity within the wake are also explained. Measured data are subsequently used to validate these wake and turbulence models, showing acceptable results for the prediction of velocity deficit within the wake, wake width and wake shape. Results also highlight the validity of the analysed turbulence models. The paper describes the problems encountered when using measured data to validate wake models and concludes by outlining subsequent work which could be carried out to further validate these models.


2014 ◽  
Vol 36 ◽  
pp. 270-276 ◽  
Author(s):  
Shahaboddin Shamshirband ◽  
Dalibor Petković ◽  
Nor Badrul Anuar ◽  
Abdullah Gani

Author(s):  
Alexander Štrbac ◽  
Tanja Martini ◽  
Daniel H. Greiwe ◽  
Frauke Hoffmann ◽  
Michael Jones

AbstractThe use of offshore wind farms in Europe to provide a sustainable alternative energy source is now considered normal. Particularly in the North Sea, a large number of wind farms exist with a significant distance from the coast. This is becoming standard practice as larger areas are required to support operations. Efficient transport and monitoring of these wind farms can only be conducted using helicopters. As wind turbines continue to grow in size, there is a need to continuously update operational requirements for these helicopters, to ensure safe operations. This study assesses German regulations for flight corridors within offshore wind farms. A semi-empirical wind turbine wake model is used to generate velocity data for the research flight simulator AVES. The reference offshore wind turbine NREL 5 MW has been used and scaled to represent wind turbine of different sizes. This paper reports result from a simulation study concerning vortex wake encounter during offshore operations. The results have been obtained through piloted simulation for a transport case through a wind farm. Both subjective and objective measures are used to assess the severity of vortex wake encounters.


Sign in / Sign up

Export Citation Format

Share Document