scholarly journals A method for preliminary rotor design – Part 2: Wind turbine Optimization with Radial Independence

2021 ◽  
Vol 6 (3) ◽  
pp. 917-933 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Michael McWilliam

Abstract. A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain an optimal relationship between the global power (CP) and load coefficient (CT, CFM) through the use of Karush–Kuhn–Tucker (KKT) multipliers, leaving an optimization problem that can be solved at each radial station independently. It allows solving load constraint power and annual energy production (AEP) optimization problems where the optimization variables are only the KKT multipliers (scalars), one for each of the constraints. For the paper, two constraints, namely the thrust and blade root flap moment, are used, leading to two optimization variables. Applying the optimization methodology to maximize power (P) or annual energy production (AEP) for a given thrust and blade root flap moment, but without a cost function, leads to the same overall result with the global optimum being unbounded in terms of rotor radius (R̃) with a global optimum being at R̃→∞. The increase in power and AEP is in this case ΔP=50 % and ΔAEP=70 %, with a baseline being the Betz optimum rotor. With a simple cost function and with the same setup of the problem, a power-per-cost (PpC) optimization resulted in a power-per-cost increase of ΔPpC=4.2 % with a radius increase of ΔR=7.9 % as well as a power increase of ΔP=9.1 %. This was obtained while keeping the same flap moment and reaching a lower thrust of ΔT=-3.8 %. The equivalent for AEP-per-cost (AEPpC) optimization leads to increased cost efficiency of ΔAEPpC=2.9 % with a radius increase of ΔR=17 % and an AEP increase of ΔAEP=13 %, again with the same, maximum flap moment, while the maximum thrust is −9.0 % lower than the baseline.

2020 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Michael McWilliam

Abstract. A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain an optimal relationship between the global power- (CP) and load-coefficient (CT, CFM) through the use of KKT-multipliers, leaving an optimization problem that can be solved at each radial station independently. It allows to solve load constraint power and Annual-Energy-Production (AEP) optimization problems where the optimization variables are only the KKT-multipliers (scalars), one for each of the constraint. For the paper two constraints, namely the thrust and blade-root-flap-moment is used, leading to two optimization variables. Applying the optimization methodology to maximize power (P) or Annual-Energy-Production (AEP) for a given thrust and blade-root-flap-moment, but without a cost-function, leads to the same overall result with the global optimum being unbounded in terms of rotor radius (R~) with a global optimum being at R~ → ∞. The increase in power and AEP is in this case ΔP = 50 % and ΔAEP = 70 %, with a baseline being the Betz-optimum rotor. With a simple cost function and with the same setup of the problem a Power-per-Cost (PpC) optimization resulted in a Power-per-Cost increase of ΔPpC = 4.2 % with a radius increase of ΔR = 7.9 % as well as a power increase of ΔP = 9.1 %. This was obtained while keeping the same flap-moment and reaching a lower thrust of ΔT = −3.8 %. The equivalent for AEP-per-Cost (AEPpC) optimization leads to an increased cost efficiency of ΔAEPpC = 2.9 % with a radius increase of a ΔR = 17 % and an AEP increase of ΔAEP = 13 %, again with the same, maximum flap-moment, while the maximum thrust is −9.0 % lower than the baseline.


2015 ◽  
Vol 806 ◽  
pp. 197-202
Author(s):  
Breda Kegl ◽  
Stanislav Pehan

The paper discusses the development procedure of a small direct drive wind turbine. Especially attention to the main rotor and to the wind blade design procedure is dedicated. Decisional technological steps are described, which makes the wind turbine design effective as environmental friendly product. All the design procedures are well documented by the clearly figures and by adequate descriptions as well. The starting conditions at different wind conditions are estimated and the interesting discussion about the necessity of the starting motor is given.


2020 ◽  
Vol 1618 ◽  
pp. 042027
Author(s):  
L Sartori ◽  
P De Fidelibus ◽  
S Cacciola ◽  
A Croce

Author(s):  
Amrita Lall ◽  
Hamid Khakpour Nejadkhaki ◽  
John Hall

A variable ratio gearbox (VRG) can enable small wind turbines to operate at discrete variable rotor speeds. This reliable, low-cost, alternative does not require power conversion equipment, as is the case with conventional variable speed. Previous work conducted by the author has demonstrated that a VRG can increase the power production for a fixed-speed system with passive blades. The current study characterizes the performance of a wind turbine equipped with a VRG and active blades. The contribution of this work is an integrative framework that optimizes power production with blade root stress. It works by defining a set of control rules that specify the VRG gear ratio and pitch angle that will be used in relation to wind speed. Three ratios are selected through the proposed procedure. A case study based on the simulation of a 300-kW wind turbine model is performed to demonstrate the proposed technique. The model is constructed with aerodynamic, mechanical, and electrical submodels. These drivetrain components work together to simulate the conversion of moving air to electrical power. The blade element momentum (BEM) technique is used here to compute the blade loading. The resulting torque and rotor speed are reduced and increased, respectively, through the mechanical system gearbox. The output from this is then applied to the electrical generator. The BEM technique is also used here to determine the bending and thrust and loads that are applied to the blade. The stress in the root of the blade is then determined based on these loads, and that caused by centrifugal force and gravity. The proposed method devises a VRG design and control algorithm based on the unique wind conditions at a given installation site. Two case studies are conducted using wind data sets provided by the National Renewable Energy Laboratory (NREL). Low and high-speed data set are selected as inputs to demonstrate the versatility of the proposed method. Dynamic programming is used to reduce the computational expense. This enables the simulation of an exhaustive set of potential VRG combinations over each set of recorded wind data. Each possible combination is evaluated in terms of the total energy production and blade-root stress produced over the simulation period. A set of weights is applied to a multi-objective function that computes the cost associated with each combination. A Pareto analysis is then used to identify the VRG combination and establish the control algorithm for both systems. The results suggest that the VRG can improve energy production in the partial-load region by roughly 10% in both cases. Although stress increases in Region 2, it decreases in Region 3, and overall, through the optimal selection of gear combinations.


2014 ◽  
Author(s):  
Jonathan Charles Berg ◽  
Brian Ray Resor ◽  
Joshua A. Paquette ◽  
Jonathan Randall White

2014 ◽  
Author(s):  
Jonathan C. Berg ◽  
Brian R. Resor ◽  
Joshua A. Paquette ◽  
Jonathan R. White

2018 ◽  
Author(s):  
Pietro Bortolotti ◽  
Abinhav Kapila ◽  
Carlo L. Bottasso

Abstract. The size of wind turbines has been steadily growing in the pursuit of a lower cost of energy by an increased wind capture. In this trend, the vast majority of wind turbine rotors has been designed based on the conventional three-bladed upwind concept. This paper aims at assessing the optimality of this configuration with respect to a three-bladed downwind design, with and without an actively controlled variable coning used to reduce the cantilever loading of the blades. A 10 MW wind turbine is used for the comparison of the various design solutions, which are obtained by an automated comprehensive aerostructural design tool. Results show that, for this turbine size, downwind rotors lead to blade mass and cost reductions of 6 % and 2 %, respectively, compared to equivalent upwind configurations. Due to a more favorable rotor attitude, the annual energy production of downwind rotors may also slightly increase in complex terrain conditions characterized by a wind upflow, leading to an overall reduction in the cost of energy. However, in more standard operating conditions, upwind rotors return the lowest cost of energy. Finally, active coning is effective in alleviating loads by reducing both blade mass and cost, but these potential benefits are negated by an increased system complexity and reduced energy production. In summary, a conventional design appears difficult to beat even at these turbine sizes, although a downwind non-aligned configuration might result in an interesting alternative.


Sign in / Sign up

Export Citation Format

Share Document