scholarly journals Comparison between upwind and downwind designs of a 10 MW wind turbine rotor

2018 ◽  
Author(s):  
Pietro Bortolotti ◽  
Abinhav Kapila ◽  
Carlo L. Bottasso

Abstract. The size of wind turbines has been steadily growing in the pursuit of a lower cost of energy by an increased wind capture. In this trend, the vast majority of wind turbine rotors has been designed based on the conventional three-bladed upwind concept. This paper aims at assessing the optimality of this configuration with respect to a three-bladed downwind design, with and without an actively controlled variable coning used to reduce the cantilever loading of the blades. A 10 MW wind turbine is used for the comparison of the various design solutions, which are obtained by an automated comprehensive aerostructural design tool. Results show that, for this turbine size, downwind rotors lead to blade mass and cost reductions of 6 % and 2 %, respectively, compared to equivalent upwind configurations. Due to a more favorable rotor attitude, the annual energy production of downwind rotors may also slightly increase in complex terrain conditions characterized by a wind upflow, leading to an overall reduction in the cost of energy. However, in more standard operating conditions, upwind rotors return the lowest cost of energy. Finally, active coning is effective in alleviating loads by reducing both blade mass and cost, but these potential benefits are negated by an increased system complexity and reduced energy production. In summary, a conventional design appears difficult to beat even at these turbine sizes, although a downwind non-aligned configuration might result in an interesting alternative.

2019 ◽  
Vol 4 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Pietro Bortolotti ◽  
Abhinav Kapila ◽  
Carlo L. Bottasso

Abstract. The size of wind turbines has been steadily growing in the pursuit of a lower cost of energy by an increased wind capture. Within this trend, the vast majority of wind turbine rotors have been designed based on the conventional three-bladed upwind concept. This paper aims at assessing the optimality of this configuration with respect to a three-bladed downwind design, with and without an actively controlled variable coning used to reduce the cantilever loading of the blades. Results indicate that a conventional design appears difficult to beat even at these turbine sizes, although a downwind nonaligned configuration might be an interesting alternative.


Author(s):  
Earl P. N. Duque ◽  
Michael D. Burklund ◽  
Wayne Johnson

A vortex lattice code, CAMRAD II, and a Reynolds-Averaged Navier-Stoke code, OVERFLOW-D2, were used to predict the aerodynamic performance of a two-bladed horizontal axis wind turbine. All computations were compared with experimental data that was collected at the NASA Ames Research Center 80-by 120-Foot Wind Tunnel. Computations were performed for both axial as well as yawed operating conditions. Various stall delay models and dynamics stall models were used by the CAMRAD II code. Comparisons between the experimental data and computed aerodynamic loads show that the OVERFLOW-D2 code can accurately predict the power and spanwise loading of a wind turbine rotor.


Author(s):  
James R. Browning ◽  
Jon G. McGowan ◽  
James F. Manwell

Although decreases in the cost of energy from utility scale wind turbine generators has made them competitive with conventional forms of utility power generation, further reductions can increase the presence of wind energy in the global energy mix. The cost of energy from a wind turbine can be reduced by increasing the annual energy production, reducing the initial capital cost of the turbine, or doing both. In this study, the cost of energy is estimated for a theoretical 1.5 MW wind turbine utilizing a continuously variable ratio hydrostatic drive train between the rotor and the generator. The estimated cost of energy is then compared to that of a conventional wind turbine of equivalent rated power. The annual energy production is estimated for the theoretical hydrostatic turbine using an assumed wind speed distribution and a turbine power curve resulting from a steady state performance model of the turbine. The initial capital cost of the turbine is estimated using cost models developed for various components unique to the hydrostatic turbine as well as economic parameters and models developed by the National Renewable Energy Lab (NREL) for their 2004 WindPACT advanced wind turbine drive train study. The resulting cost of energy, along with various performance characteristics of interest, are presented and compared to those of the WindPACT baseline turbine intended to represent a conventional utility scale wind turbine.


2017 ◽  
Author(s):  
Nikolaos Stergiannis ◽  
Jeroen van Beeck ◽  
Mark C. Runacres

Abstract. The development of large-scale wind energy projects has created the demand for increasingly accurate and efficient models that limit a project's uncertainties and risk. Wake effects are of great importance and are relevant for the optimization of wind farms. Despite a growing body of research, there are still many open questions and challenges to overcome. In computational modelling, there are always numerous input parameters such as material properties, geometry, boundary conditions, initial conditions, turbulence modelling etc. whose estimation is difficult and their values are often inaccurate or uncertain. Due to the lack of information of several sources, e.g., uncertainties present in operating conditions as well as in the mathematical modelling, the computational output is also uncertain. It is therefore very important to validate the mathematical models with experiments performed in controlled conditions. In the present paper, the single wake characteristics of a Horizontal-Axis Wind Turbine Rotor (HAWT) and their spatial evolution are investigated with different Computational Fluid Dynamics (CFD) modelling approaches and compared to experimental measurements. The steady state 3-D Reynolds-Averaged Navier Stokes (RANS) equations are solved in the open-source platform OpenFOAM, using different turbulence closure schemes. For the full-rotor CFD simulations, the Multiple Reference Frames (MRF) approach was used to model the rotation of the blades. For the simplified cases, an actuator disk model was used with the experimentally measured thrust (CT) and power (CP) coefficient values. The performance of each modelling approach is compared with experimental wind tunnel wake measurements from the 4th blind test organized by NOWITECH and NORCOWE in 2015. Numerical results are compared with experimental data along three horizontal lines downstream, covering all the wake regions. Wake predictions are shown to be very sensitive to the choice of the RANS turbulence model. For most cases, the ADM under-predicts the velocity deficit, except for the case of RNG k-ε which showed a superb performance in the mid and far wake. The full wind turbine rotor simulations showed good agreement to the experimental data, mainly in the near wake, amplifying the differences between the simplified models.


2020 ◽  
Author(s):  
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori ◽  
Paride De Fidelibus

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake-turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking mainly at the increase of produced power, possibly weighted with the wind Weibull and rose at a specific place, and, sometimes, by looking also at the fatigue loads. However, an aspect which is rather overlooked is the evaluation of the impact that a farm control law has on the maximum loads and on the dynamic responses under extreme conditions of the individual wind turbine. In this work, two promising wind farm controls, based respectively on Wake Redirection (WR) and Dynamic Induction Control (DIC) strategy, are evaluated at a single wind turbine level. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators (e.g. fatigue and ultimate loads, actuator duty cycle and annual energy production). Secondarily, an optimal blade redesign process, which takes into account the presence of the wind farm control, is performed with the goal of quantifying the possible modification in the structure of the blade and hence of quantifying the impact of the control on the Cost of Energy model.


2022 ◽  
Vol 7 (1) ◽  
pp. 1-17
Author(s):  
Alessandro Croce ◽  
Stefano Cacciola ◽  
Luca Sartori

Abstract. Wind farm control is one of the solutions recently proposed to increase the overall energy production of a wind power plant. A generic wind farm control is typically synthesized so as to optimize the energy production of the entire wind farm by reducing the detrimental effects due to wake–turbine interactions. As a matter of fact, the performance of a farm control is typically measured by looking at the increase in the power production, properly weighted through the wind statistics. Sometimes, fatigue loads are also considered in the control optimization problem. However, an aspect which is rather overlooked in the literature on this subject is the evaluation of the impact that a farm control law has on the individual wind turbine in terms of maximum loads and dynamic response under extreme conditions. In this work, two promising wind farm controls, based on wake redirection (WR) and dynamic induction control (DIC) strategy, are evaluated at the level of a single front-row wind turbine. To do so, a two-pronged analysis is performed. Firstly, the control techniques are evaluated in terms of the related impact on some specific key performance indicators, with special emphasis on ultimate loads and maximum blade deflection. Secondarily, an optimal blade redesign process is performed with the goal of quantifying the modification in the structure of the blade entailed by a possible increase in ultimate values due to the presence of wind farm control. Such an analysis provides for an important piece of information for assessing the impact of the farm control on the cost-of-energy model.


2020 ◽  
Vol 307 ◽  
pp. 01053
Author(s):  
Unai Fernandez-Gamiz ◽  
Iñigo Errasti ◽  
Ekaitz Zulueta ◽  
José Manuel Lopez Guede ◽  
Ana Boyano

The considerable increase of wind turbine rotor size and weight in the last years has made impossible to control as they were controlled 20 years ago. The cost of energy is an essential role to maintain this type of energy as a viable alternative in economic terms with traditional or other renewable energies. Through the last decades many different flow control devices have been developed. Most of them were shaped for aeronautical issues and this was its first research application. Currently researchers are working to optimize and introduce these types of devices in multi megawatt wind turbines. Gurney flap (GF) is a vane perpendicular to the airfoil surface with a size between 0.1 and 3% of the airfoil chord length, placed in the lower or upper side of the airfoil close to the trailing edge of the airfoil. When GFs are appropriately designed, they increase the total lift of the airfoil while reducing the drag. Thanks to the implementation of the of this flow control device the efficiency of a wind turbine improves, which results on an increase in the power generation.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
S. Andrew Ning ◽  
Rick Damiani ◽  
Patrick J. Moriarty

Efficient extraction of wind energy is a complex, multidisciplinary process. This paper examines common objectives used in wind turbine optimization problems. The focus is not on the specific optimized designs, but rather on understanding when certain objectives and constraints are necessary, and what their limitations are. Maximizing annual energy production, or even using sequential aero/structural optimization, is shown to be significantly suboptimal compared to using integrated aero/structural metrics. Minimizing the ratio of turbine mass to annual energy production can be effective for fixed rotor diameter designs, as long as the tower mass is estimated carefully. For variable-diameter designs, the predicted optimal diameter may be misleading. This is because the mass of the tower is a large fraction of the total turbine mass, but the cost of the tower is a much smaller fraction of overall turbine costs. Minimizing the cost of energy is a much better metric, though high fidelity in the cost modeling is as important as high fidelity in the physics modeling. Furthermore, deterministic cost of energy minimization can be inadequate, given the stochastic nature of the wind and various uncertainties associated with physical processes and model choices. Optimization in the presence of uncertainty is necessary to create robust turbine designs.


2020 ◽  
Author(s):  
Kenneth Loenbaek ◽  
Christian Bak ◽  
Michael McWilliam

Abstract. A novel wind turbine rotor optimization methodology is presented. Using an assumption of radial independence it is possible to obtain an optimal relationship between the global power- (CP) and load-coefficient (CT, CFM) through the use of KKT-multipliers, leaving an optimization problem that can be solved at each radial station independently. It allows to solve load constraint power and Annual-Energy-Production (AEP) optimization problems where the optimization variables are only the KKT-multipliers (scalars), one for each of the constraint. For the paper two constraints, namely the thrust and blade-root-flap-moment is used, leading to two optimization variables. Applying the optimization methodology to maximize power (P) or Annual-Energy-Production (AEP) for a given thrust and blade-root-flap-moment, but without a cost-function, leads to the same overall result with the global optimum being unbounded in terms of rotor radius (R~) with a global optimum being at R~ → ∞. The increase in power and AEP is in this case ΔP = 50 % and ΔAEP = 70 %, with a baseline being the Betz-optimum rotor. With a simple cost function and with the same setup of the problem a Power-per-Cost (PpC) optimization resulted in a Power-per-Cost increase of ΔPpC = 4.2 % with a radius increase of ΔR = 7.9 % as well as a power increase of ΔP = 9.1 %. This was obtained while keeping the same flap-moment and reaching a lower thrust of ΔT = −3.8 %. The equivalent for AEP-per-Cost (AEPpC) optimization leads to an increased cost efficiency of ΔAEPpC = 2.9 % with a radius increase of a ΔR = 17 % and an AEP increase of ΔAEP = 13 %, again with the same, maximum flap-moment, while the maximum thrust is −9.0 % lower than the baseline.


Sign in / Sign up

Export Citation Format

Share Document