scholarly journals Cover art

2016 ◽  
Vol 85 (1) ◽  
Author(s):  
Rakesh Gudimella

Cover art by Rakesh Gudimella. In 1964, Dorothy Hodgkin won the Nobel Prize for the discovery of the structure of penicillin using the emerging technique of x-ray crystallography. The original x-ray diffraction patterns and the subsequent molecular model she created is shown in the foreground. Although the chemical formula of penicillin was known, its structure was not, making it difficult to produce on a large scale. Her discovery set us on the path to understanding antibiotic mechanisms and opened the door for the synthesis of cephalosporins and other important medications. The background shows the chemical structures of several lifesaving and influential drugs on the WHO List of Essential Medicines.

2018 ◽  
Vol 25 (3) ◽  
pp. 748-756 ◽  
Author(s):  
M. X. Tang ◽  
Y. Y. Zhang ◽  
J. C. E ◽  
S. N. Luo

Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.


1956 ◽  
Vol 2 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Cecily Cannan Selby ◽  
Richard S. Bear

From analysis of moderate- to small-angle x-ray diffraction patterns, in the light of similar experience with paramyosin, has been derived the following description for the structure of actin-rich filaments in "tinted" portions of the adductor muscle of the clam, Venus mercenaria: 1. Some 11 diffraction maxima, widely streaked along layer lines and occurring at moderate diffraction angles (spacings 7 to 60 A) appear to be accounted for as (hk) reflections of a net whose cell elements are, for dry material: a ≑ 82 A, b = 406 A (filament axis identity period), and γ ≑ 82° (angle between a and b axes). These reflections follow a selection rule which indicates that the net cell is non-primitive and contains 15 equivalent locations (nodes) arranged as shown in Fig. 5. An alternative net has b' = 351 A and 13 nodes per cell. 2. Another interpretation rolls the net into a large-scale helix and places the 15 (or 13) nodes along 7 (or 6) turns of a helical locus projecting 406 (or 351) A along the filament axis. Whether considered to be built of planar-net or helix-net cells, the individual filament contains a single cell width transverse to its axis. Transverse filament dimensions are, therefore, in either case similar (50 to 100 A). 3. Consideration of existing electron-optical, physicochemical, and x-ray diffraction data regarding isolated actin suggests that the net cell is built of rods, each containing in cross-section from one to four actin molecules which run parallel to or twisted about rod axes that extend at 12° to the filament axis along the (21) diagonals of the cell. Depending on monomer shape, 2 to 15 monomers furnish length to reach across two cells, and the actin molecules are built into each rod in such a way as to repeat (or nearly repeat) structure 15 (or 13) times along the double cell length. Further details of intra-rod structure cannot be suggested because of lack of wide-angle diffraction information. 4. The actin system is sensitive to treatment of the muscle with ethanol. Concentrations of 5 per cent or greater abolish the net reflections. Other solvents—water, benzene, ether, pyridine, acetone—do not alter the pattern materially. 5. Two other reflections, occurring at the first and second layer lines of an axial periodicity of about 400 A, do not clearly belong to the actin-net system. They represent either a superstructure built upon the filaments by parts of the actin molecules themselves or by incorporated other molecular species, or they arise from an additional macromolecular component (possibly myosin, or its homologues or fractions) of similar axial periodicity.


1997 ◽  
Vol 12 (2) ◽  
pp. 81-86 ◽  
Author(s):  
J. M. S. Skakle ◽  
L. P. Moroni ◽  
F. P. Glasser

The X-ray powder diffraction patterns for two new synthetic calcium uranium (VI) silicate hydrate phases are reported. Ca1.5U6(OH)7O16·7H2O is orthorhombic, space group P*a*, with unit cell a=13.8949(14), b=12.0776(12), c=15.228(3) Å. The structure appears to be related to that of becquerelite. Ca2(UO2)2(Si2O5)3·10H2O was also indexed on an orthorhombic unit cell, a=12.075(3), b=15.406(6), c=26.043(6) Å. The Powder Diffraction File coverage of uranium-containing minerals which could, on the basis of their chemical formula, form in U-containing cements is also reviewed.


2011 ◽  
Vol 26 (4) ◽  
pp. 346-349 ◽  
Author(s):  
M. A. Macías ◽  
J. A. Henao ◽  
Lina María Acosta ◽  
Alirio Palma

The 6,8-dimethyl-cis-2-vinyl-2,3,4,5-tetrahydro-1H-benzo[b]azepin-4-ol (2a) (Chemical formula C14H19NO) and 8-chloro-9-methyl-cis-2-(prop-1-en-2-yl)-2,3,4,5-tetrahydro-1H-benzo[b]azepin-4-ol (2b) (Chemical formula C14H18ClNO) were prepared via the reductive cleavage of the bridged N-O bond of the corresponding 1,4-epoxytetrahydro-1-benzazepines. The X-ray powder diffraction patterns for the new compounds were obtained. The compound 2a was found to crystallize in an orthorhombic system with space group Pmn21 (No. 31), refined unit-cell parameters a = 19.422(6) Å, b = 6.512(3) Å, c = 9.757(4) Å and V = 1234.0(5) Å3. The compound 2b was found to crystallize in a monoclinic system with space group P21/m (No. 11), refined unit-cell parameters a = 17.570(4) Å, b = 8.952(3) Å, c = 14.985(4) Å, β = 101.66(2)°, and V = 2308.3(9) Å3.


1998 ◽  
Vol 5 (3) ◽  
pp. 333-335 ◽  
Author(s):  
H. Iwasaki ◽  
N. Kurosawa ◽  
S. Masui ◽  
S. Fujita ◽  
T. Yurugi ◽  
...  

A compact superconducting storage ring installed at Ritsumeikan University is operated at an electron-beam energy of 0.575 GeV and an initial beam current of 300 mA. The radius of the circular electron orbit is as small as 0.5 m, suggesting that the radiation emitted contains short-wavelength components. With an imaging plate as a detector, X-ray precession diffraction patterns were recorded for organic single crystals within a reasonable period of time using radiation of wavelength 0.155 nm (8 keV) to 0.248 nm (5 keV). The use of the radiation in the structural study of organic crystals containing 3d metal atoms using the phenomena of anomalous scattering is described. If appropriately planned, X-ray diffraction and/or scattering experiments can be made at the compact ring without recourse to a large-scale ring.


2019 ◽  
Vol 26 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Y. Y. Zhang ◽  
M. X. Tang ◽  
Y. Cai ◽  
J. C. E ◽  
S. N. Luo

In situ X-ray diffraction with advanced X-ray sources offers unique opportunities for investigating materials properties under extreme conditions such as shock-wave loading. Here, Singh's theory for deducing high-pressure density and strength from two-dimensional (2D) diffraction patterns is rigorously examined with large-scale molecular dynamics simulations of isothermal compression and shock-wave compression. Two representative solids are explored: nanocrystalline Ta and diamond. Analysis of simulated 2D X-ray diffraction patterns is compared against direct molecular dynamics simulation results. Singh's method is highly accurate for density measurement (within 1%) and reasonable for strength measurement (within 10%), and can be used for such measurements on nanocrystalline and polycrystalline solids under extreme conditions (e.g. in the megabar regime).


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


Sign in / Sign up

Export Citation Format

Share Document