Study of Au-CeO2 Nano-particles using analytical Transmission Electron Microscopy

Author(s):  
P. Gu ◽  
G. Yang ◽  
R.F. Klie

Cerium oxide doped with various rare earth metals is often used as a support for nano-sized gold particles, and demonstrates to be a promising catalyst for the water gas shift reaction at low temperatures. Many factors are hypothesized to affect the activity of this heterogeneous catalyst, including its loading with gold, the rare-earth dopant, the support and Au particle size, and leaching of the sample. In this study, we examined several Au/CeO2-based catalyst samples, including 2.4% Au/(Ce,Gd)O2, 1.8% Au/(Ce,La)O2 leached, 0.5% Au/(Ce,Gd)O2 leached, and 0.75% Au/CeO2 utilizing analytical transmission electron microscopy. The effects of Au and rare-earth doping on the ceria lattice parameter were investigated, and it was determined that there are no significant variations in the particle's structure or lattice-spacing. Furthermore, the particle sizes of each of the four samples were investigated concluding that although the 1.8% Au/(Ce,La)O2 leached sample has a slightly larger particle size, and the 2.4% Au/(Ce,Gd)O2 sample has a slightly smaller particle size, the differentiation is not adequate to be accountable for the radical distinction in catalytic activity.

Author(s):  
B. Graham ◽  
R.F. Klie

In the hope of optimizing the Fischer-Tropsch mechanism to produce cleaner ethanol, the catalyst- promoter interaction between rhodium and manganese was examined by transmission electron microscopy. Three samples were analyzed on a carbon nanotube (CNT) substrate with 3 wt% rhodium (3%Rh/CNT), 1% manganese with 3 wt% rhodium (1%Mn/3% Rh/CNT), and 2% manganese with 3 wt% rhodium (2% Mn/3% Rh/CNT). The average particle size were found to be (1.9 ± 0.6) nm, (2.1 ± 0.5) nm, and (3.2 ± 0.6) nm, respectively. An increase in particle size indicates that the rhodium and manganese are interacting. The lattice parameter for rhodium were also determined to be (4.1 ± 0.1) Å, (4.2 ± 0.1) Å, and (3.8 ± 0.1) Å, respectively. The decrease in lattice parameter in the 2%Mn/3%Rh/CNT sample was most likely due to a change in the crystal structure of the rhodium particles as a result of the interaction between the manganese and rhodium.


2002 ◽  
Vol 17 (9) ◽  
pp. 2197-2200 ◽  
Author(s):  
Juan Yang ◽  
Sen Mei ◽  
José M.F. Ferreira

Well-dispersed anatase and rutile nano-particles were prepared via hydrothermal treatment of tetrabutylammonium hydroxide-peptized and HNO3-peptized sols at 240 °C. A broad particle size distribution of anatase crystals was observed in the nonpeptized TiO2 species hydrothermally treated at 240 °C. X-ray diffraction and transmission electron microscopy, as well as zeta potential measurement, were used to characterize the particles. The formation of the well-dispersed anatase and rutile particles from the peptized samples could be attributed to (i) homogeneous distribution of the component in the peptized sols, and (ii) the high long-range electrostatic forces between particles in the presence of both peptizers, which were not present in the nonpeptized samples. This work provided a new way to prepare nano-crystals of titania.


Author(s):  
George Guthrie ◽  
David Veblen

The nature of a geologic fluid can often be inferred from fluid-filled cavities (generally <100 μm in size) that are trapped during the growth of a mineral. A variety of techniques enables the fluids and daughter crystals (any solid precipitated from the trapped fluid) to be identified from cavities greater than a few micrometers. Many minerals, however, contain fluid inclusions smaller than a micrometer. Though inclusions this small are difficult or impossible to study by conventional techniques, they are ideally suited for study by analytical/ transmission electron microscopy (A/TEM) and electron diffraction. We have used this technique to study fluid inclusions and daughter crystals in diamond and feldspar.Inclusion-rich samples of diamond and feldspar were ion-thinned to electron transparency and examined with a Philips 420T electron microscope (120 keV) equipped with an EDAX beryllium-windowed energy dispersive spectrometer. Thin edges of the sample were perforated in areas that appeared in light microscopy to be populated densely with inclusions. In a few cases, the perforations were bound polygonal sides to which crystals (structurally and compositionally different from the host mineral) were attached (Figure 1).


1997 ◽  
Vol 3 (S2) ◽  
pp. 413-414
Author(s):  
E.M. Hunt ◽  
J.M. Hampikian ◽  
N.D. Evans

Ion implantation can be used to alter the optical response of insulators through the formation of embedded nano-sized particles. Single crystal alumina has been implanted at ambient temperature with 50 keV Ca+ to a fluence of 5 x 1016 ions/cm2. Ion channeling, Knoop microhardness measurements, and transmission electron microscopy (TEM) indicate that the alumina surface layer was amorphized by the implant. TEM also revealed nano-sized crystals ≈7 - 8 nm in diameter as seen in Figure 1. These nanocrystals are randomly oriented, and exhibit a face-centered cubic structure (FCC) with a lattice parameter of 0.409 nm ± 0.002 nm. The similarity between this crystallography and that of pure aluminum (which is FCC with a lattice parameter of 0.404 nm) suggests that they are metallic aluminum nanocrystals with a slightly dilated lattice parameter, possibly due to the incorporation of a small amount of calcium.Energy-filtered transmission electron microscopy (EFTEM) provides an avenue by which to confirm the metallic nature of the aluminum involved in the nanocrystals.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


Sign in / Sign up

Export Citation Format

Share Document