scholarly journals USING MOBILE DEVICES FOR TOPOLOGICAL INFERENCE OF INDOOR ENVIRONMENTS

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 65 ◽  
Author(s):  
Stefania Monica ◽  
Federico Bergenti

The study of techniques to estimate the position of mobile devices with a high level of accuracy and robustness is essential to provide advanced location based services in indoor environments. An algorithm to enable mobile devices to estimate their positions in known indoor environments is proposed in this paper under the assumption that fixed anchor nodes are available at known locations. The proposed algorithm is specifically designed to be executed on the mobile device whose position is under investigation, and it allows the device to estimate its position within the environment by actively measuring distance estimates from the anchor nodes. In order to reduce the impact of the errors caused by the arrangement of the anchor nodes in the environment, the proposed algorithm first transforms the localization problem into an optimization problem, and then, it solves the derived optimization problem using techniques inspired by nonlinear programming. Experimental results obtained using ultra-wide band signaling are presented to assess the performance of the algorithm and to compare it with reference alternatives. The presented experimental results confirm that the proposed algorithm provides an increased level of accuracy and robustness with respect to two reference alternatives, regardless of the position of the anchor nodes.


Author(s):  
George Sithole ◽  
Sisi Zlatanova

Over the last decade, harnessing the commercial potential of smart mobile devices in indoor environments has spurred interest in indoor mapping and navigation. Users experience indoor environments differently. For this reason navigational models have to be designed to adapt to a user’s personality, and to reflect as many cognitive maps as possible. This paper presents an extension of a previously proposed framework. In this extension the notion of placement is accounted for, thereby enabling one aspect of the ‘personalised indoor experience’. In the paper, firstly referential expressions are used as a tool to discuss the different ways of thinking of placement within indoor spaces. Next, placement is expressed in terms of the concept of Position, Location, Place and Area. Finally, the previously proposed framework is extended to include these concepts of placement. An example is provided of the use of the extended framework. <br><br> Notable characteristics of the framework are: (1) Sub-spaces, resources and agents can simultaneously possess different types of placement, e.g., a person in a room can have an xyz position and a location defined by the room number. While these entities can simultaneously have different forms of placement, only one is dominant. (2) Sub-spaces, resources and agents are capable of possessing modifiers that alter their access and usage. (3) Sub-spaces inherit the modifiers of the resources or agents contained in them. (4) Unlike conventional navigational models which treat resources and obstacles as different types of entities, in the proposed framework there are only resources and whether a resource is an obstacle is determined by a modifier that determines whether a user can access the resource. The power of the framework is that it blends the geometry and topology of space, the influence of human activity within sub-spaces together with the different notions of placement in a way that is simple and yet very flexible.


Author(s):  
Wilson E. Sakpere ◽  
Michael O. Adeyeye

The navigation ecosystem is rapidly changing. Indoor navigation has attracted attention with the introduction of mobile devices into the market. Although mobile devices are used more often for outdoor navigation, they have opened up opportunities for indoor navigation proponents. Near Field Communication in indoor navigation is still in its exploratory stage. Despite an increase in the variety of indoor navigation research, challenges remain in designing a framework that is neither complex nor expensive. NFC is a novel method of navigating in indoor environments. Providing an overview of its benefits and usefulness compared with existing indoor navigation technologies is the subject of this chapter.


Author(s):  
Jason Zhi Liang ◽  
Nicholas Corso ◽  
Eric Turner ◽  
Avideh Zakhor

2021 ◽  
Vol 10 (4) ◽  
pp. 195
Author(s):  
Longyu Zhang ◽  
Hao Xia ◽  
Qingjun Liu ◽  
Chunyang Wei ◽  
Dong Fu ◽  
...  

Positioning information has become one of the most important information for processing and displaying on smart mobile devices. In this paper, we propose a visual positioning method using RGB-D image on smart mobile devices. Firstly, the pose of each image in the training set is calculated through feature extraction and description, image registration, and pose map optimization. Then, in the image retrieval stage, the training set and the query set are clustered to generate the vector of local aggregated descriptors (VLAD) description vector. In order to overcome the problem that the description vector loses the image color information and improve the retrieval accuracy under different lighting conditions, the opponent color information and depth information are added to the description vector for retrieval. Finally, using the point cloud corresponding to the retrieval result image and its pose, the pose of the retrieved image is calculated by perspective-n-point (PnP) method. The results of indoor scene positioning under different illumination conditions show that the proposed method not only improves the positioning accuracy compared with the original VLAD and ORB-SLAM2, but also has high computational efficiency.


Author(s):  
Antonio-Pedro Albín-Rodríguez ◽  
Yolanda-María De-La-Fuente-Robles ◽  
José-Luis López-Ruiz ◽  
Ángeles Verdejo-Espinosa ◽  
Macarena Espinilla Estévez

Due to the large number of elderly people with physical and cognitive issues, there is a strong need to provide indoor location systems that help caregivers monitor as many people as possible and with the best quality possible. In this paper, a fuzzy indoor location methodology is proposed in a smart environment based on mobile devices and Bluetooth Low Energy (BLE) beacons where a set of Received Signal Strength Indicators (RSSI) is received by mobile devices worn by the inhabitants. The use of fuzzy logic and a fuzzy linguistic approach is proposed to deal with the imprecise nature of the RSSI values, which are influenced by external factors such as radio waves, causing significant fluctuations. A case study carried out at the Smart Lab of the University of Jaén (UJAmI Smart Lab) is presented to demonstrate the effectiveness of the proposed methodology, where our proposal is compared with a non-fuzzy logic approach, obtaining an accuracy of 91.63%, approximately 10 points higher than the methodology without using fuzzy logic. Finally, our theoretical proposal is accompanied by a description of the UJAmI Location system, which applies the theory to the functionality of locating elderly people in indoor environments.


Author(s):  
George Sithole ◽  
Sisi Zlatanova

Over the last decade, harnessing the commercial potential of smart mobile devices in indoor environments has spurred interest in indoor mapping and navigation. Users experience indoor environments differently. For this reason navigational models have to be designed to adapt to a user’s personality, and to reflect as many cognitive maps as possible. This paper presents an extension of a previously proposed framework. In this extension the notion of placement is accounted for, thereby enabling one aspect of the ‘personalised indoor experience’. In the paper, firstly referential expressions are used as a tool to discuss the different ways of thinking of placement within indoor spaces. Next, placement is expressed in terms of the concept of Position, Location, Place and Area. Finally, the previously proposed framework is extended to include these concepts of placement. An example is provided of the use of the extended framework. <br><br> Notable characteristics of the framework are: (1) Sub-spaces, resources and agents can simultaneously possess different types of placement, e.g., a person in a room can have an xyz position and a location defined by the room number. While these entities can simultaneously have different forms of placement, only one is dominant. (2) Sub-spaces, resources and agents are capable of possessing modifiers that alter their access and usage. (3) Sub-spaces inherit the modifiers of the resources or agents contained in them. (4) Unlike conventional navigational models which treat resources and obstacles as different types of entities, in the proposed framework there are only resources and whether a resource is an obstacle is determined by a modifier that determines whether a user can access the resource. The power of the framework is that it blends the geometry and topology of space, the influence of human activity within sub-spaces together with the different notions of placement in a way that is simple and yet very flexible.


Sign in / Sign up

Export Citation Format

Share Document