scholarly journals Application of 3D Printing Technology for Fashion Products with Kawung Pattern

Author(s):  
Nike Jhorda Iftira ◽  
Eri Naharani Ustazah
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jiwoon Jeong ◽  
Hyein Park ◽  
Yoojeong Lee ◽  
Jihye Kang ◽  
Jaehoon Chun

AbstractThis study created wearable fashion products with parametric design characteristics, using 3D printing technology. The goal of the study was to understand what parametric design features can be simulated with 3D modeling and printing technology, as well as to demonstrate what techniques can be used to produce fashion products using 3D printing technology. This study created two different parametric motifs using an FDM-type 3D printer with TPU and ABS as the printing materials. With those motifs, we produced three garments and two accessories. The limitations found during the process were modeling the exact measurement of the motifs that will merge with the apparel design seamlessly while maintaining the parametric features, as well as attaching the printed motifs to fabric without ruining the integrity of the textile. A significant implication of this study is that it recreates parametric designs on the human body and utilizes 3D printing technology for fashion products. This paper cast a light on a discussion about the technique can be applied on fashion design with full-sized body and encouraged designers to explore further with technological advancements in the future.


Author(s):  
Mohd Nazri Ahmad ◽  
Ahmad Afiq Tarmeze ◽  
Amir Hamzah Abdul Rasib

2020 ◽  
Vol 14 (7) ◽  
pp. 470
Author(s):  
Jarosław Kotliński ◽  
Karol Osowski ◽  
Zbigniew Kęsy ◽  
Andrzej Kęsy

2021 ◽  
pp. 2102649
Author(s):  
Sourav Chaule ◽  
Jongha Hwang ◽  
Seong‐Ji Ha ◽  
Jihun Kang ◽  
Jong‐Chul Yoon ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1106
Author(s):  
Alejandro Cortés ◽  
Xoan F. Sánchez-Romate ◽  
Alberto Jiménez-Suárez ◽  
Mónica Campo ◽  
Ali Esmaeili ◽  
...  

Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions.


Sign in / Sign up

Export Citation Format

Share Document