scholarly journals Anaerobic Co-digestion of Press mud and Molasses-based Distillery Wastewater for Enhanced Biogas Production

2021 ◽  
Vol 943 (1) ◽  
pp. 012017
Author(s):  
R C Evidente ◽  
M C Almendrala ◽  
A R Caparanga ◽  
K R Pamintuan ◽  
J A Mendoza

Abstract With goals in determining the effect of diluting the distillery wastewater (DWW) and of varying the amount of DWW and press mud (PM), anaerobic co-digestion study was carried out at mesophilic condition in a 2-L Erlenmeyer flask, with a working volume of 800 mL for Batch 1 and 1500 mL for Batch 2 experiments. For Batch 1, two different ratios of DWW and tap water, with 2:3 and 3:2, were used to assess the effect of dilution on the methane yield, where same volumetric amount of PM was added. For Batch 2, following ratio of PM and DWW were used: a) 1:0, b) 1:1, c) 1:1, d) 2:1, and e) 1:2. All samples had the same amount of inoculum, except that Batch 1 samples had bagasse. The parameters that were assessed after 42 days of digestion were: pH, COD, BOD, TSS, VS, Cu, Ca, Mg, Mn, TOC, TN, and methane yield. For the effect of dilution, a significant difference in the methane yield between samples with higher and lower dilution ratio was seen, and in the first batch, the optimal dilution ratio of DWW and H2O, with 3:2 gave higher methane yield of 78.23% (v/v). Meanwhile, optimal volumetric ratio of DWW and PM from the Batch 2 experiments, with value of 1:2, gave the highest methane yield of 79.43% (v/v).

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6434
Author(s):  
Emmanuel Kweinor Tetteh ◽  
Gloria Amo-Duodu ◽  
Sudesh Rathilal

Digestate is characterized by high water content, and in the water and wastewater treatment settings, necessitates both large storage capacities and a high cost of disposal. By seeding digestate with four magnetic nanoparticles (MNPs), this study aimed to recover biogas and boost its methane potential anaerobically. This was carried out via biochemical methane potential (BMP) tests with five 1 L bioreactors, with a working volume of 80% and 20% head space. These were operated under anaerobic conditions at a temperature 40 °C for a 30 d incubation period. The SEM/EDX results revealed that the morphological surface area of the digestate with the MNPs increased as compared to its raw state. Comparatively, the degree of degradation of the bioreactors with MNPs resulted in over 75% decontamination (COD, color, and turbidity) as compared to the control system result of 60% without MNPs. The highest biogas production (400 mL/day) and methane yield (100% CH4) was attained with 2 g of Fe2O4-TiO2 MNPs as compared to the control biogas production (350 mL/day) and methane yield (65% CH4). Economically, the highest energy balance achieved was estimated as 320.49 ZAR/kWh, or 22.89 USD/kWh in annual energy savings for this same system. These findings demonstrate that digestate seeded with MNPs has great potential to improve decontamination efficiency, biogas production and circular economy in wastewater management.


2018 ◽  
Vol 56 (2A) ◽  
pp. 37-42
Author(s):  
Dinh Thi Nga

This research was carried out to evaluate the effect of organic loading rate to the performance of anaerobic co-digestion digester treating organic fraction of food waste (FW) and sludge waste (SW) from wastewater treatment plant. The experiment was conducted in two runs: Run S50, substrate contained 50 % of FW and 50 % of SW in term of volatile solid (VS) concentration; Run S100 (control run) contained 100 % SW in the influent substrate. The experiment was performed in a 3L working volume reactor at ambient temperature with three levels of organic loading rate (OLR) as 2; 4; 6 kgVS/m3/day, the duration of experiment was 18 days for each level of OLR. As results, the average of biogas production rate (BPR) at OLR 2;4;6 kgVS/m3/day,in Run S50 and Run S100 was 390 – 520;  860 – 1220; 1140 - 2440 ml/day and 160 – 300; 560 – 640; 700 - 1400 ml/day, respectively. The maximum methane yield (mlCH4/gVSadded/day) of organic loading rate 2; 4; 6 kgVS/m3/day was 118.96; 326.49; 628.20 for Run S50 and; 58.28; 160.27; 255.54 for Run S100, respectively. In conclusion, Run S50 always produced higher biogas production rate and higher methane yield at all 3 OLR levels. The higer OLR could enhance BPR and methane yield but at OLR 6 kgVS/m3/day made unstable performance and high concentration of COD in the effluent. Therefore, in this experimental conditions it has better operation at OLR under 6 kgVS/m3/day for the stable performance of reactors.


2019 ◽  
Vol 13 (1) ◽  
pp. 47
Author(s):  
Agus Haryanto ◽  
Rivan Okfrianas ◽  
Winda Rahmawati

A B S T R A C TThis study aims to determine the effect of substrate composition on biogas production from a mixture of cow dung and elephant grass using semi-continuous digester. Fresh cow dung and elephant grass were obtained from Department of Animal Husbandry, Faculty of Agriculture, University of Lampung. Elephant grass was knife-chopped, crushed using a blender and then mixed with cow dung at a total solid (TS) ratio between elephant grass and cow dung varies from 35:65 (P1), 40:60 (P2), 45:55 (P3), and 50:50 (P4). This mixture was then diluted with tap water until its TS content reach 5% and was used as substrate. Four semi-continuous digesters (labeled as P1 to P4) having a capacity of 36 L and working volume of 28 L were initially loaded with 22 L of diluted fresh cow dung (dilution ratio of 1:1) as a starter (source of bacteria) and were left until stable condition. When the biogas was produced, the prepared substrate was added daily into the respective digester at a loading rate of 500 mL.d-1. Parameters to be observed included daily temperature and pH of the substrate, daily biogas production, TS and VS content, and biogas quality. The results showed that the digester worked at average pH of 6.9 and the daily temperature 26.3 to 29.7°C. The total biogas production for 60 days was 608.4, 676.8, 600.0, and 613.3 L, respectively for P1, P2, P3, and P4. Biogas yield after the substrate achieving the designed composition was 254 (P1), 260 (P2), 261 (P3), and 271 L.m-3 of the substrate (P4). The addition of elephant grass up to 50% could maintain high production of biogas.Keywords: biogas; cow dung; elephant grass; productivity; semi-continuous A B S T R A KPenelitian ini bertujuan untuk mengetahui pengaruh komposisi substrat terhadap produktivitas biogas dari campuran kotoran sapi dan rumput gajah pada digester semi kontinu. Rumput gajah dan kotoran sapi segar diperoleh dari Jurusan Peternakan, Fakultas Pertanian, Universitas Lampung. Rumput gajah dipotong menggunakan pisau dan dihancurkan dengan blender hingga halus dan dicampurkan dengan kotoran sapi pada perbandingan berat padatan kering (TS) 35:65 (P1), 40:60 (P2), 45:55 (P3), dan 50:50 (P4). Campuran ini diencerkan dengan air hingga kandungan TS mencapai 5% dan digunakan sebagai substrat. Empat digester semi kontinu (diberi label P1 hingga P4) dengan volume kerja 28 L mula-mula diisi dengan 22 L starter kotoran sapi segar yang diencerkan dengan air pada perbandingan berat 1:1 dan dibiarkan hingga stabil. Setelah gas mulai diproduksi, substrat yang telah dipersiapkan (sesuai label) ditambahkan ke dalam masing-masing digester dengan laju pembebanan 500 mL hari-1. Parameter yang diamati meliputi suhu harian, pH substrat, kandungan TS dan VS, produksi biogas, dan kualitas biogas. Hasil penelitian menunjukkan bahwa digester bekerja pada pH rata-rata 6,9 dan suhu harian antara 26,3–29,7°C. Total produksi biogas selama 60 hari adalah 608,4; 676,8; 600,0; dan 613,3 L berturut-turut untuk P1, P2, P3, dan P4. Produktivitas biogas setelah substrat mencapai komposisi yang direncanakan adalah 254 (P1), 260 (P2), 261 (P3), dan 271 L/m-3 substrat (P4). Penambahan rumput gajah hingga 50% masih menghasilkan biogas yang tinggi.Kata kunci: biogas; kotoran sapi; produktivitas; rumput gajah; semi-kontinu


Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Fauzan Najmi Ahmad Mazlan ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
...  

The abundance of agricultural wastes produced from pineapple processing and livestock industries has resulted in the difficulties of disposing of a large amount of waste. Anaerobic digestion is a way to reduce waste and generate renewable energy sources including biogas. In this study, pineapple waste is co-digested with cow dung in batch experiments under mesophilic temperature at 38±1°C at a working volume of 100 ml in 125 ml serum bottle. The effects of the total solid on methane yields are investigated at a different substrate ratio. The batch study is conducted at 3 different total solid which are 12%, 20% and 28% and at three different substrate ratio cow dung to pineapple waste (CD: PW) (1:1, 1:2 and 1:3). Daily biogas collection for 28% total solid at 1:1 ratio results in the highest cumulative biogas production of 313 ml, followed by 28% total solid at 1:3 ratio with 246 ml biogas yield. The highest methane yield is achieved at 12% total solid with a 1:2 ratio (17.19 CH4/g VS). Results show that at 12% total solid produces the highest methane yield at all ratios compared to other total solid percentages. Moreover, methane yield decreases as the total solid percentage increases from 12% to 28%. Overall, the production of methane from pineapple wastes co-digested with cow dung is proven to be a good strategy to minimise solid wastes.


2020 ◽  
pp. 40-48
Author(s):  
Mayura Srikanlayanukul ◽  
Parinda Suksabye

The objectives of this research were to study the optimum percentage ratios of food waste and vetiver grass (Vetiveria zizaniodes (L.) Nash) for biogas production and process stability in anaerobic digestion system. The nine mixture ratios of food waste (FM) and vetiver grass (VG) were 100:0, 80:20, 75:25, 66.67:33.33, 50:50, 33.33:66.67, 25:75, 20:80 and 0:100. The biogas production was subjected to anaerobic batch with working volume of 1.8 L and had digestion time 60 d at 35 ± 2 °C. High specific methane yield of 0.30 L g-1 VS removed was obtained from the fermentation at ratio of FW:VG at 80:20 with C/N ratio of 28.20. The specific methane yield of the single digestion of food waste (100:0) and single digestion of vetiver grass (0:100) were only 0.18 and 0.11 L g-1 VS removed, respectively. It was found that the cumulative methane production of FW: VG ratio of 80:20 was increased 34.89 % and 96.93 % compared to single substrate of food waste and vetiver grass, respectively. The results also showed the highest COD, VS and TS removal with a percentage ratio of FW: VG at 80:20, while the single vetiver grass digestion was the lowest COD, VS and TS removal. VFAs/Total alkalinity ratio of all ratio of food waste to vetiver at digestion time 40 d remained in 0.0895±0.0007 to 0.1944±0.0027 were steadied for this digester. It can be concluded that co-digestion of food waste and vetiver improve the biogas yield and degradation efficiency.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


2021 ◽  
Vol 11 (7) ◽  
pp. 3064
Author(s):  
Roberta Mota-Panizio ◽  
Manuel Jesús Hermoso-Orzáez ◽  
Luis Carmo-Calado ◽  
Gonçalo Lourinho ◽  
Paulo Sérgio Duque de Brito

The present study evaluates the digestion of cork boiling wastewater (CBW) through a biochemical methane potential (BMP) test. BMP assays were carried out with a working volume of 600 mL at a constant mesophilic temperature (35 °C). The experiment bottles contained CBW and inoculum (digested sludge from a wastewater treatment plant (WWTP)), with a ratio of inoculum/substrate (Ino/CBW) of 1:1 and 2:1 on the basis of volatile solids (VSs); the codigestion with food waste (FW) had a ratio of 2/0.7:0.3 (Ino/CBW:FW) and the codigestion with cow manure (CM) had a ratio of 2/0.5:0.5 (Ino/CBW:CM). Biogas and methane production was proportional to the inoculum substrate ratio (ISR) used. BMP tests have proved to be valuable for inferring the adequacy of anaerobic digestion to treat wastewater from the cork industry. The results indicate that the biomethane potential of CBWs for Ino/CBW ratios 1:1 and 2:1 is very low compared to other organic substrates. For the codigestion tests, the test with the Ino/CBW:CM ratio of 2/0.7:0.3 showed better biomethane yields, being in the expected values. This demonstrated that it is possible to perform the anaerobic digestion (AD) of CBW using a cosubstrate to increase biogas production and biomethane and to improve the quality of the final digestate.


2021 ◽  
Vol 44 (1) ◽  
pp. 194-202
Author(s):  
Funda Demir ◽  
Meral Yildirim Ozen ◽  
Emek Moroydor Derun

Abstract In this study, essential (Ca, Cr, Cu, Fe, K, Mg, Na, P, Zn), and non-essential (Al, Ni, Pb) element contents of the drinking and baby water samples which are sold in the local market and tap water samples in Istanbul were examined. It was determined that elements of Cr, Cu, Fe, P, Zn, Al, and Ni were below detection limits in all water samples. Among the non-essential elements analyzed in water samples, Pb was the only detected element. At the same time, the percentages that meet the daily element requirements of infants were also calculated. As a result of the evaluations made, there is no significant difference in infant nutrition between baby waters and other drinking waters in terms of the element content.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 878
Author(s):  
Apinya Singkhala ◽  
Chonticha Mamimin ◽  
Alissara Reungsang ◽  
Sompong O-Thong

A sudden pH drops always inhibits the anaerobic digestion (AD) reactor for biogas production from palm oil mill effluent (POME). The pH adjustment of POME by oil palm ash addition and the biogas effluent recycling effect on the preventing of pH drop and change of the archaea community was investigated. The pH adjustment of POME to 7.5 increased the methane yield two times more than raw POME (pH 4.3). The optimal dose for pH adjustment by oil palm ash addition was 5% w/v with a methane yield of 440 mL-CH4/gVS. The optimal dose for pH adjustment by biogas effluent recycling was 20% v/v with a methane yield of 351 mL-CH4/gVS. Methane production from POME in a continuous reactor with pH adjustment by 5% w/v oil palm ash and 20% v/v biogas effluent recycling was 19.1 ± 0.25 and 13.8 ± 0.3 m3 CH4/m3-POME, respectively. The pH adjustment by oil palm ash enhanced methane production for the long-term operation with the stability of pH, alkalinity, and archaea community. Oil palm ash increased the number of Methanosarcina mazei and Methanothermobacter defluvii. Oil palm ash is a cost-effective alkali material as a source of buffer and trace metals for preventing the pH drop and the increased methanogen population in the AD process.


2011 ◽  
Vol 64 (4) ◽  
pp. 967-973
Author(s):  
S. Koyunluoglu-Aynur ◽  
R. Riffat ◽  
S. Murthy

The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.


Sign in / Sign up

Export Citation Format

Share Document