scholarly journals Prediction of Deformation Mechanism and Fracture for an Auto-Part with Advanced High Strength Steel using Solid Element and Damage Theory

2017 ◽  
Vol 26 (5) ◽  
pp. 293-299
Author(s):  
J.H. Kwak ◽  
S.J. Yoon ◽  
S.H. Kim ◽  
J.K. Park ◽  
H.G. Han
2009 ◽  
Vol 36 (8) ◽  
pp. 1044-1057 ◽  
Author(s):  
Nader Abedrabbo ◽  
Robert Mayer ◽  
Alan Thompson ◽  
Christopher Salisbury ◽  
Michael Worswick ◽  
...  

2011 ◽  
Vol 156 (3) ◽  
pp. 105-111
Author(s):  
Johannes Schneckenleitner ◽  
Reinhold Schneider ◽  
Gerald Rabler ◽  
Christian Walch ◽  
Ernst Heinl ◽  
...  

2011 ◽  
Vol 410 ◽  
pp. 232-235 ◽  
Author(s):  
Sansot Panich ◽  
Vitoon Uthaisangsuk ◽  
Surasak Suranuntchai ◽  
Suwat Jirathearanat

Anisotropic plastic behavior of advanced high strength steel sheet of grade TRIP780 (Transformation Induced Plasticity) was investigated using three different yield functions, namely, the von Mises’s isotropic, Hill’s anisotropic (Hill’48), and Barlat’s anisotropic (Yld2000-2d) criterion. Uniaxial tensile and balanced biaxial test were conducted for the examined steel in order to characterize flow behavior and plastic anisotropy for different stress states. Especially, disk compression test was performed for obtaining balanced r-value. All these data were used to determine the anisotropic coefficients. As a result, yield stresses and r-values for different directions were calculated according to these yield criteria. The results were compared with experimental data. To verify the modelling accuracy, tensile tests of various notched samples were carried out and stress-strain distributions in the critical area were characterized. By this manner, the effect of stress triaxiality due to different notched shapes on the strain localization calculated by the investigated yield criteria could be studied.


2014 ◽  
Vol 4 (4) ◽  
pp. 686-689 ◽  
Author(s):  
N. Baluch ◽  
Z. M. Udin ◽  
C. S. Abdullah

The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS) significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.


Sign in / Sign up

Export Citation Format

Share Document