scholarly journals Advanced High Strength Steel in Auto Industry: an Overview

2014 ◽  
Vol 4 (4) ◽  
pp. 686-689 ◽  
Author(s):  
N. Baluch ◽  
Z. M. Udin ◽  
C. S. Abdullah

The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS) significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

2015 ◽  
Vol 77 (4) ◽  
Author(s):  
S. Mohtar ◽  
N. Baluch ◽  
C. S. Abdullah

To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using Advanced High Strength Steel (AHSS). The main reason to utilize AHSS is their better performance in crash energy management, which allows one to down gauge with AHSS. In addition, these engineered AHSS address the automotive industry’s need for steels with higher strength and enhanced formability. The improved capabilities the AHSS bring to the automotive industry do not bring new forming problems but certainly accentuate problems already existing with the application of any higher strength steel. These concerns include higher loads on presses and tools, greater energy requirements, and increased need for springback compensation and control. Springback problem, consistently, is one of the leading roadblocks hindering auto stamping productivity. This paper describes the origins and types of springback, characterizes what causes it, and elaborates ways to rectify it through, stabilization, compensation, and verification.


Alloy Digest ◽  
2007 ◽  
Vol 56 (2) ◽  

Abstract MITTAL DI-FORM T700 and HF80Y100T are low-carbon steels with a manganese and silicon composition. Dual-phase (DP) steels are one of the important advanced high-strength steel (AHSS) products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The DI-FORM grades exhibit low yield-to-tensile strengths, and the numeric designation in the name corresponds to the tensile strength. This datasheet provides information on microstructure and tensile properties as well as deformation and fatigue. It also includes information on forming. Filing Code: SA-561. Producer or source: Mittal Steel USA Flat Products.


Alloy Digest ◽  
2007 ◽  
Vol 56 (1) ◽  

Abstract MITTAL DI-FORM T590 and T600 are low-carbon dual-phase steels containing manganese and silicon. Dual-phase (DP) steels are important advanced high-strength steel (AHSS) products developed for the automotive industry. Their microstructure typically consists of a soft ferrite phase with dispersed islands of a hard martensite phase. The martensite phase is substantially stronger than the ferrite phase. The DI-FORM grades exhibit low yield-to-tensile strength ratios. The numeric designation in the grade name corresponds to the tensile strength in MPa. This datasheet provides information on microstructure, tensile properties, and bend strength as well as fatigue. It also includes information on forming. Filing Code: SA-558. Producer or source: Mittal Steel USA Flat Products.


2009 ◽  
Vol 36 (8) ◽  
pp. 1044-1057 ◽  
Author(s):  
Nader Abedrabbo ◽  
Robert Mayer ◽  
Alan Thompson ◽  
Christopher Salisbury ◽  
Michael Worswick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document