scholarly journals MHD FLOW OF A REACTING AND RADIATING NANOLIQUID PAST AN INCLINED HEATED PERMEABLE PLATE: ANALYSIS OF ENTROPY GENERATION

2021 ◽  
Vol 51 (4) ◽  
pp. 269-276
Author(s):  
Oluwole Daniel Makinde ◽  
Adetayo Samuel Eegunjobi

This paper examines the aggregate impacts of magnetic field, thermophoresis, Brownian motion, variable viscosity, chemical reaction and radiative heat flux on the thermal putrefaction and immanent irreversibility of a channelling nanoliquid film flowing along with a slanted heated permeable plate. Following Buongiorno approach, the two-phase nanoliquid nonlinear model is obtained and addressed numerically using shooting technique as well as the Runge-Kutta- Fehlberg integration scheme. Effects of various emerging parameters on the overall flow structure with heat and mass transfer characteristics including entropy generation rate and Bejan number are displayed using diagrams and discussed. It is found that the entropy generation rate lessened with an upsurge in a magnetic field but heightened with an elevation in the buoyancy forces.

2017 ◽  
Vol 374 ◽  
pp. 47-66 ◽  
Author(s):  
Adetayo Samuel Eegunjobi ◽  
Oluwole Daniel Makinde

In this paper, both first and second laws of thermodynamics are employed to investigate the combined effects of magnetic field, buoyancy force, velocity slip, suction/injection, porous medium permeability, thermal radiation absorption, viscous and Joule heating on mixed convective flow of an electrical conducting Casson fluid in a vertical channel. The dimensionless governing equations are obtained and solved numerically using a shooting technique coupled with a fourth order Runge-Kutta-Fehlberg integration scheme. The influence of various thermophysical parameters on velocity and temperature profiles, skin friction, Nusselt number, entropy generation rate and Bejan number are presented graphically and discussed quantitatively. It is found that with appropriate combination of thermophysical parameter values the entropy generation rate in the presence of an applied magnetic field can successfully.


2019 ◽  
Vol 29 (10) ◽  
pp. 3795-3821
Author(s):  
Sumaira Qayyum ◽  
Muhammad Ijaz Khan ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi

Purpose The purpose of this study is to analyze the Entropy generation analysis and heat transport in three-dimensional flow between two stretchable disks. Joule heating and heat generation/absorption are incorporated in the thermal equation. Thermo-diffusion effect is also considered. Flow is conducting for time-dependent applied magnetic field. Induced magnetic field is not taken into consideration. Velocity and thermal slip conditions at both the disks are implemented. The flow problem is modeled by using Navier–Stokes equations with entropy generation rate and Bejan number. Design/methodology/approach Von Karman transformations are used to reduce the nonlinear governing expressions into an ordinary one and then tackled by homotopy analysis method for convergent series solutions. The nonlinear expressions for total entropy generation rate are obtained with appropriate transformations. The impacts of different flow variables on velocity, temperature, entropy generation rate and Bejan number are described graphically. Velocity, temperature and concentration gradients are discussed in the presence of flow variables. Findings Axial, radial and tangential velocity profiles show decreasing trend for larger values of velocity slip parameters. For a larger Brinkman number, the entropy generation increases, while a decreasing trend is noticed for Bejan number. Originality/value To the best of the authors’ knowledge, no such analyses have been reported in the literature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Das ◽  
S. Chakraborty ◽  
R. N. Jana

Purpose This study aims to expose the flow phenomena and entropy generation during a; magnetohydrodynamic (MHD) Poiseuille flow of water-based nanofluids (NFs) in a porous channel subject to hydrodynamic slip and convective heating boundary conditions. The flow caused by the uniform pressure; gradient between infinite parallel plates is considered steady and fully developed. The nanoparticles; namely, copper, alumina and titanium oxide are taken with pure water as the base fluid. Viscous dissipation and Joule heating impacts are also incorporated in this investigation. Design/methodology/approach The reduced governing equations are solved analytically in closed form. The physical insights of noteworthy parameters on the important flow quantities are demonstrated through graphs and analyzed elaborately. The thermodynamic analysis is performed by calculating entropy generation; rate and Bejan number. A graphical comparison between solutions corresponding to NFs and regular fluid in the channel is also provided. Findings The analysis of the results divulges that entropy generation minimization can be achieved by an appropriate combination of the geometrical and physical parameters of thermomechanical systems. It is reported that ascent in magnetic parameter number declines the velocity profiles, while the inverse pattern is witnessed with augmentation in hydrodynamic slip parameters. The temperature dissemination declines with the growth of Biot numbers. It is perceived that the entropy generation rate lessens with an upgrade in magnetic parameter, whereas the reverse trend of Bejan number is perceived with expansion in magnetic parameter and Biot number. The important contribution of the result is that the entropy generation rate is controlled with an appropriate composition of thermo-physical parameter values. Moreover, in the presence of a magnetic field and suction/injection at the channel walls, the shear stresses at the channel walls are reduced about two times. Practical implications In various industrial applications, minimizing entropy generation plays a significant role. Miniaturization of entropy is the utilization of the energy of thermal devices such as micro heat exchangers, micromixers, micropumps and cooling microelectromechanical devices. Originality/value An attentive review of the literature discloses that quite a few studies have been conducted on entropy generation analysis of a fully developed MHD Poiseuille flow of NFs through a permeable channel subject to the velocity slip and convective heating conditions at the walls.


2017 ◽  
Vol 374 ◽  
pp. 29-46 ◽  
Author(s):  
Ahmad Muhammad ◽  
Oluwole Daniel Makinde

This paper discusses the thermodynamics irreversibility in an unsteady hydromagnetic mixed convective flow of an electrically conducting optically dense fluid over a permeable vertical surface under the combined influence of thermal radiation, velocity slip, temperature jump, buoyancy force, viscous dissipation, Joule heating and magnetic field. The governing partial differential equations are reduced to ordinary differential equations by using similarity variable. A local similarity solution is obtained numerically using shooting technique coupled with Runge-Kutta Fehlberg integration method. The influence of various thermophysical parameters on velocity and temperature profiles, skin friction, Nusselt number, entropy generation rate and Bejan number are presented graphically and discussed quantitatively. It is found that velocity slip, surface injection and temperature jump can successfully reduce entropy generation rate in the presence of an applied magnetic field. A comparison of numerical solution is made with the exact solution under a special case scenario and excellent agreement is found.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tarek N. Abdelhameed

AbstractThis article examines the entropy generation in the magnetohydrodynamics (MHD) flow of Newtonian fluid (water) under the effect of applied magnetic in the absence of an induced magnetic field. More precisely, the flow of water is considered past an accelerated plate such that the fluid is receiving constant heating from the initial plate. The fluid disturbance away from the plate is negligible, therefore, the domain of flow is considered as semi-infinite. The flow and heat transfer problem is considered in terms of differential equations with physical conditions and then the corresponding equations for entropy generation and Bejan number are developed. The problem is solved for exact solutions using the Laplace transform and finite difference methods. Results are displayed in graphs and tables and discussed for embedded flow parameters. Results showed that the magnetic field has a strong influence on water flow, entropy generation, and Bejan number.


2010 ◽  
Vol 132 (9) ◽  
Author(s):  
Mohammad Shanbghazani ◽  
Vahid Heidarpoor ◽  
Marc A. Rosen ◽  
Iraj Mirzaee

The entropy generation is investigated numerically in axisymmetric, steady-state, and incompressible laminar flow in a rotating single free disk. The finite-volume method is used for solving the momentum and energy equations needed for the determination of the entropy generation due to heat transfer and fluid friction. The numerical model is validated by comparing it to previously reported analytical and experimental data for momentum and energy. Results are presented in terms of velocity distribution, temperature, local entropy generation rate, Bejan number, and irreversibility ratio distribution for various rotational Reynolds number and physical cases, using dimensionless parameters. It is demonstrated that increasing rotational Reynolds number increases the local entropy generation rate and irreversibility rate, and that the irreversibility is mainly due to heat transfer while the irreversibility associated with fluid friction is minor.


Author(s):  
Kgomotshwana Frans Thosago ◽  
Lazarus Rundora ◽  
Samuel Olumide Adesanya

This article aims to computationally study entropy generation in a magnetohydrodynamic (MHD) third grade fluid flow in a horizontal channel with impermeable walls. The fluids viscosity and thermal conductivity are assumed to be dependent on temperature. The flow is driven by an applied uniform axial pressure gradient between infinite parallel plates and is considered to be incompressible, steady and fully developed. Adomian decomposition method (ADM) is used to obtain series solutions of the nonlinear governing equations. Thermodynamic analysis is done by computing the entropy generation rate and the irreversibility ratio (Bejan number). The effects of the various pertinent embedded parameters on the velocity field, temperature field, entropy generation rate and Bejan number are analysed through vivid graphical manipulations. The analysis shows that an appropriate combination of thermophysical parameters efficiently achieves entropy generation minimization in the thermomechanical system. The analysis shows that entropy generation minimization is achieved by increasing the magnetic field and the third grade material parameters, and therefore designs and processes incorporating MHD third grade fluid flow systems are far more likely to give optimum and efficient performance.


Author(s):  
Muhammad Ijaz Khan ◽  
Sohail Ahmad Khan ◽  
Tasawar Hayat ◽  
Muhammad Faisal Javed ◽  
Ahmed Alsaedi

Purpose This study aims to examine the flow characteristics of Ree–Eyring fluid between two rotating disks. The characteristics of heat transfer are discussed in presence of viscous dissipation, heat source/sink and nonlinear radiative heat flux. Design/methodology/approach Nonlinear flow expressions lead to ordinary ones through adequate similarity transformations. The ordinary differential system has been tackled through optimal homotopic method. The impact of different flow variables on the velocity field, entropy generation rate and temperature fields is graphically discussed. The surface drag force and heat transfer rate are numerically examined via various pertinent parameters. Findings By minimization of values of stretching parameter and Brinkman number, the entropy generation rate can be controlled. The entropy generation rate enhances for higher values of magnetic parameter, while the Bejan number is decreased via magnetic parameter. Originality/value No such work is yet published in the literature.


2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


Sign in / Sign up

Export Citation Format

Share Document