scholarly journals The Role of Interregional Trade in Virtual Water on the Blue Water Footprint and the Water Exploitation Index in Brazil

Author(s):  
Jaqueline Coelho Visentin ◽  
Joaquim Jose Martins Guilhoto
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3286
Author(s):  
Megan Konar ◽  
Landon Marston

This paper commemorates the influence of Arjen Y. Hoekstra on water footprint research of the United States. It is part of the Special Issue “In Memory of Prof. Arjen Y. Hoekstra”. Arjen Y. Hoekstra both inspired and enabled a community of scholars to work on understanding the water footprint of the United States. He did this by comprehensively establishing the terminology and methodology that serves as the foundation for water footprint research. His work on the water footprint of humanity at the global scale highlighted the key role of a few nations in the global water footprint of production, consumption, and virtual water trade. This research inspired water scholars to focus on the United States by highlighting its key role amongst world nations. Importantly, he enabled the research of many others by making water footprint estimates freely available. We review the state of the literature on water footprints of the United States, including its water footprint of production, consumption, and virtual water flows. Additionally, we highlight metrics that have been developed to assess the vulnerability, resiliency, sustainability, and equity of sub-national water footprints and domestic virtual water flows. We highlight opportunities for future research.


2010 ◽  
Vol 14 (7) ◽  
pp. 1259-1276 ◽  
Author(s):  
M. M. Mekonnen ◽  
A. Y. Hoekstra

Abstract. The aim of this study is to estimate the green, blue and grey water footprint of wheat in a spatially-explicit way, both from a production and consumption perspective. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of the crop at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in wheat production is estimated for each grid cell. We have used the water footprint and virtual water flow assessment framework as in the guideline of the Water Footprint Network. The global wheat production in the period 1996–2005 required about 108 billion cubic meters of water per year. The major portion of this water (70%) comes from green water, about 19% comes from blue water, and the remaining 11% is grey water. The global average water footprint of wheat per ton of crop was 1830 m3/ton. About 18% of the water footprint related to the production of wheat is meant not for domestic consumption but for export. About 55% of the virtual water export comes from the USA, Canada and Australia alone. For the period 1996–2005, the global average water saving from international trade in wheat products was 65 Gm3/yr. A relatively large total blue water footprint as a result of wheat production is observed in the Ganges and Indus river basins, which are known for their water stress problems. The two basins alone account for about 47% of the blue water footprint related to global wheat production. About 93% of the water footprint of wheat consumption in Japan lies in other countries, particularly the USA, Australia and Canada. In Italy, with an average wheat consumption of 150 kg/yr per person, more than two times the word average, about 44% of the total water footprint related to this wheat consumption lies outside Italy. The major part of this external water footprint of Italy lies in France and the USA.


2020 ◽  
Vol 15 (2) ◽  
pp. 121
Author(s):  
Fathi Alfinur Rizqi ◽  
Sri Nuryani Utami

Populasi penduduk Indonesia diperkirakan akan mencapai 350 juta pada tahun 2045, mendorong Indonesia untuk meningkatkan ketersediaan pangan 3% setiap tahunnya. Program Upaya Khusus (Upsus) Padi Jagung Kedelai (Pajale), menjadi salah satu program unggulan pemerintah dalam menjawab tantangan ini. Di sisi lain, tekanan lingkungan memberikan batas jelas untuk melaksanakan proses budidaya pertanian berkelanjutan. Sebagaimana dua tujuan dari Sustainability Development Goals (SDGs) adalah menghentikan kelaparan dan kepastian akses terhadap air. Konsep air virtual (virtual water) hadir sebagai salah satu alternatif konsep berserta alat hitung air yang diperlukan dalam sebuah proses produksi pertanian. Penelitian ini dilakukan untuk mengidentifikasi air virtual untuk komoditas padi, jagung, dan kedelai di wilayah Daerah Istimewa Yogyakarta. Analisa dalam penelitian ini menghasilkan nilai tapak air yang terdiri dari blue water, green water, dan grey water. Hasil penelitian menunjukkan, bahwa water footprint tahunan kedelai merupakan yang tertinggi dengan 2.589 m3/ton disusul padi ladang, jagung, dan padi sawah sebesar 1.280 m3/ton; 844 m3/ton; 841 m3/ton. Hasil ini disebabkan oleh tingkat produktivitas yang semakin tinggi nilainya maka akan menghasil nilai water footprint akan semakin rendah. Pelaksanaan penelitian ini mengungkap faktor yang mempengaruhi jumlah air yang diperlukan untuk memproduksi komoditas pertanian. Pemilihan lokasi, kondisi iklim, jenis tanaman, teknik budidaya hingga penggunaan pupuk merupakan faktor yang perlu diperhatikan untuk dapat menekan penggunaan air dalam proses produksi pertanian. Dengan demikian, tujuan pelaksanaan budidaya pertanian yang berkelanjutan dapat terwujud.


Author(s):  
Maria J. Beltrán

The concept of virtual water was originally promoted by Professor Tony Allan to shed light on how Middle Eastern countries’ water requirements have exceeded available resources since 1970. Trying to explain why no war over water has occurred when many economies in the Middle East region have only half the water they need, Allan argued that economic systems solved the water supply problem for the region, supplying water via trade. In other words, water scarcity in these countries was being managed by importing virtual water in the form of agricultural products from the international market. While virtual water is a theoretical indicator, the “water footprint” emerged as a methodological attempt to estimate virtual water, although some authors point out the confusion surrounding these two indicators (see General Overviews). As the water footprint and virtual water provided useful means for estimating flows of water through international trade in products and services, many works have been published around these concepts since the first great meeting held on the topic, the Congress of Virtual Water in 2003 (see General Overviews). This article introduces the foundational pieces in this literature, then includes different sections on the associated concepts (see Colors of Virtual Water Flows I and Colors of Virtual Water Flows II), the main methodologies used to quantify virtual water flows (see Methodologies for Quantifying Virtual Water Flows), studies on virtual water flows at different geographical scales and across diverse economic sectors and products (see Applications of Accounting Methods I and Applications of Accounting Methods II), the most important papers dealing with the role of virtual water and water footprint as a policy tool (see From Virtual Water and Water Footprint to Policy), and finally the main criticisms of these concepts (see Critics of Virtual Water and Water Footprint).


2020 ◽  
Author(s):  
Stefania Tamea ◽  
Marta Tuninetti ◽  
Irene Soligno ◽  
Francesco Laio

Abstract. To support national and global assessments of water use in agriculture, we build a comprehensive and harmonized database of water footprint and virtual water trade (VWT) data for hundreds of agricultural goods. The water footprint, indicating the water needed for the production of a good, including rainwater and water withdrawals, is expressed as a volume per unit weight of commodity (or unit water footprint, uWF), which is here estimated at the country scale for every year in the period 1961–2016. The uWF is also differentiated, where possible, between production and supply, referring to local production only and to a mixed role of local production and import, respectively. The VWT data, representing the amount of water needed for the production of a good and virtually exchanged with the international trade, are provided for each commodity as bilateral trade matrices, between origin and destination countries, for every year in the period 1986–2016). The database, developed within the EU-funded CWASI project, improves upon earlier datasets because it takes into account the annual variability of the uWF of crops, it accounts for both produced and imported goods in the definition of the uWF and it traces goods across the international trade up to the origin of goods' production. The CWASI database is available on the Zenodo repository at https://doi.org/10.5281/zenodo.3987468 (Tamea et al., 2020) and welcomes contributions and improvements from the research community to enable analyses specifically accounting for the temporal evolution of the uWF.


2010 ◽  
Vol 7 (2) ◽  
pp. 2499-2542 ◽  
Author(s):  
M. M. Mekonnen ◽  
A. Y. Hoekstra

Abstract. The aim of this study is to estimate the green, blue and grey water footprint of wheat in a spatially-explicit way, both from a production and consumption perspective. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of the crop at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in wheat production is estimated for each grid cell. We have used the water footprint and virtual water flow assessment framework as in the guideline of the Water Footprint Network. The global wheat production in the period 1996–2005 required about 1088 billion cubic meters of water per year. The major portion of this water (70%) comes from green water, about 19% comes from blue water, and the remaining 11% is grey water. The global average water footprint of wheat per ton of crop was 1830 m3/ton. About 18% of the water footprint related to the production of wheat is meant not for domestic consumption but for export. About 55% of the virtual water export comes from the USA, Canada and Australia alone. For the period 1996–2005, the global average water saving from international trade in wheat products was 65 Gm3/yr. A relatively large total blue water footprint as a result of wheat production is observed in the Ganges and Indus river basins, which are known for their water stress problems. The two basins alone account for about 47% of the blue water footprint related to global wheat production. About 93% of the water footprint of wheat consumption in Japan lies in other countries, particularly the USA, Australia and Canada. In Italy, with an average wheat consumption of 150 kg/yr per person, more than two times the word average, about 44% of the total water footprint related to this wheat consumption lies outside Italy. The major part of this external water footprint of Italy lies in France and the USA.


Sign in / Sign up

Export Citation Format

Share Document