scholarly journals Agro-economic and socio-environmental assessments of food and virtual water trades of Iran

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.

2020 ◽  
Author(s):  
Meng Li ◽  
La Zhuo ◽  
Pute Wu

<p>Water scarcity is a significant risk for meeting increasing food demand around the world. The importance of identifying the driving forces behind water consumption in agriculture and relative virtual water (VW) flows has been widely reported in order to provide practical advice for sustainable agricultural water resource management. However, the regional differences in the driving forces behind either water consumption or VW flows were largely ignored. To fill the crucial gap, taking nine major crops grown in the Beijing-Tianjin-Hebei (BTH) region in China over 2000-2013 as the study case, we investigate the regional differences in socio-economic driving forces on both the estimated water footprint (WF) in crop production and relative inter-city VW flows for each crop per year. Results show that although there is little change in total WFs in crop production (~43.3 billion m<sup>3</sup>/y on annual average), the WF per unit mass of crop decreased and the crop structure in the total WFs changed greatly. The BTH region was a VW importer with net VW import of 11.7 billion m<sup>3</sup>/y by 2013. The per capita GDP was the main positive driver of both total WFs of crop production and relative VW flows. Whereas the economic productivity and consumption ability were inhibiting factors for the WFs and VW flows, respectively. The levels of total crop WFs in agricultural cities were more sensitive to the effects of the main driving factors. The intensity of driving factors behind the inter-regional crop-related VW flows was shown to be directly related to the regional role as an importer or exporter. The current analysis suggests to develop characteristic agriculture considering the local role and regional differences in terms of water consumption and relative inter-regional VW flows, aiming for a balance between water sustainability, food security and economic developments.</p>


2020 ◽  
Author(s):  
Hongrong Huang ◽  
La Zhuo ◽  
Pute Wu

<p>Agricultural infrastructure plays important roles in boosting food production and trade system in developing countries, while as being a ‘grey solutions’, generates increasingly risks on the environmental sustainability. There is little information on impacts of agricultural infrastructure developments on water consumption and flows, (i.e. water footprint and virtual water flows) related to crop production, consumption and trade especially in developing countries with high water risk. Here we, taking mainland China over 2000-2017 as the study case, identified and evaluated the strengths and spatial heterogeneities in main socio-economic driving factors of provincial water footprints and inter-provincial virtual water flows related to three staple crops (rice, wheat and maize). For the first time, we consider irrigation (II), electricity (EI) and road infrastructures (RI) in the driving factor analysis through the extended STIRPAT (stochastic impacts by regression on population, affluence and technology) model. Results show that the II, EI and RI in China were expanded by 33.8 times, 4.5 times and 2.4 times, respectively by year 2017 compared to 2000. Although the II was the most critical driver to effectively reduce the per unit water footprint, especially the blue water footprint in crop production (i.e., increasing water efficiency), the developments of II led to the bigger total water consumption. Such phenomenon was observed in Jing-Jin region, North Coast and Northwest China with water resource shortage. The EI and RI had increasing effects on provincial virtual water export, and the corresponding driving strengths varied across spaces. Obviously, the visible effects from the agricultural infrastructures on regional water consumption, water productivity and virtual water patterns cannot be neglected. </p>


2019 ◽  
Vol 17 ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2020 ◽  
Vol 24 (6) ◽  
pp. 3015-3031
Author(s):  
Hatem Chouchane ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Feeding a growing population with global natural-resource constraints becomes an increasingly challenging task. Changing spatial cropping patterns could contribute to sustaining crop production and mitigating water scarcity. Previous studies on water saving through international food trade focussed either on comparing water productivities among food-trading countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, how both differences in national average water productivities and water endowments can be considered to analyse comparative advantages of countries for different types of crop production. A linear-optimization algorithm is used to find modifications in global cropping patterns that reduce national blue water scarcity in the world's most severely water-scarce countries, while keeping global production of each crop unchanged and preventing any increase in total irrigated or rainfed harvested areas in each country. The results are used to assess national comparative advantages and disadvantages for different crops. Even when allowing a maximum expansion of the irrigated or rainfed harvested area per crop per country of only 10 %, the blue water scarcity in the world's most water-scarce countries can be greatly reduced. In this case, we could achieve a reduction of the global blue water footprint of crop production of 21 % and a decrease of the global total harvested and irrigated areas of 2 % and 10 % respectively. Shifts in rainfed areas have a dominant share in reducing the blue water footprint of crop production.


2019 ◽  
Vol 17 (10) ◽  
Author(s):  
Somayeh Rezaei Kalvani ◽  
Amir Hamzah Sharaai ◽  
Latifah Abd Manaf ◽  
Amir Hossein Hamidian

Evaluation of supply chain of water consumption contributes toward reducing water scarcity, as it allows for increased water productivity in the agricultural sector. Water Footprint (WF) is a powerful tool for water management; it accounts for the volume of water consumption at high spatial and temporal resolution. The objective of this research is to investigate the water footprint trend of crop production in Tehran from 2008 to 2015 and to assess blue water scarcity in the agricultural sector. Water consumption of crop production was evaluated based on the WF method. Evapotranspiration was evaluated by applying the CROPWAT model. Blue water scarcity was evaluated using the blue water footprint-to-blue water availability formula. The results demonstrate that pistachio, cotton, walnut, almond, and wheat have a large WF, amounting to 11.111 m3/kg, 4,703 m3/kg, 3,932 m3/kg, 3,217 m3/kg, and 1.817 m3/kg, respectively. Agricultural blue water scarcity amounted to 0.6 (severe water stress class) (2015–2016). Agricultural water consumption in Tehran is unsustainable since it contributes to severe blue water scarcity. Tehran should reduce agricultural water scarcity by reducing the water footprint of the agricultural sector.


2019 ◽  
Author(s):  
Hatem Chouchane ◽  
Maarten S. Krol ◽  
Arjen Y. Hoekstra

Abstract. Feeding a growing population with global natural resource constraints becomes an increasingly challenging task. Changing spatial cropping patterns and international crop trade could contribute to sustain crop production and mitigate water scarcity. Previous studies on water saving through international food trade focussed either on comparing water productivities among food-trading countries or on analysing food trade in relation to national water endowments. Here, we consider, for the first time, how both differences in water productivities and water endowments can be considered to analyse comparative advantages of countries for different types of crop production. A linear optimization algorithm is used to find modifications in global cropping patterns that reduce blue water scarcity in the world's hotspots, under the constraint of current global production per crop and current cropland areas. The optimization considers national water and land endowments as well as water and land productivity per country per crop. The results are used to assess national comparative advantages and disadvantages for different crops. When allowing a maximum expansion of harvested area per crop per country of 10 %, the blue water scarcity in the world's most water-scarce countries can be greatly reduced. In this case, we could achieve a reduction of the current blue water footprint of crop production in the world of 9 % and a decrease of global total harvested area of 4 %.


2021 ◽  
Author(s):  
Elena De Petrillo ◽  
Marta Tuninetti ◽  
Francesco Laio

<p>Through the international trade of agricultural goods, water resources that are physically used in the country of production are virtually transferred to the country of consumption. Food trade leads to a global redistribution of freshwater resources, thus shaping distant interdependencies among countries. Recent studies have shown how agricultural trade drives an outsourcing of environmental impacts pertaining to depletion and pollution of freshwater resources, and eutrophication of river bodies in distant producer countries. What is less clear is how the final consumer – being an individual, a company, or a community- impacts the water resources of producer countries at a subnational scale. Indeed, the variability of sub-national water footprint (WF in m<sup>3</sup>/tonne) due to climate, soil properties, irrigation practices, and fertilizer inputs is generally lost in trade analyses, as most trade data are only available at the country scale. The latest version of the Spatially Explicit Information on Production to Consumption Systems model  (SEI-PCS) by Trase provides detailed data on single trade flows (in tonne) along the crop supply chain: from local municipalities- to exporter companies- to importer companies – to the final consumer countries. These data allow us to capitalize on the high-resolution data of agricultural WF available in the literature, in order to quantify the sub-national virtual water flows behind food trade. As a first step, we assess the detailed soybean trade between Brazil and Italy. This assessment is relevant for water management because the global soybean flow reaching Italy may be traced back to 374 municipalities with heterogeneous agricultural practises and water use efficiency. Results show that the largest flow of virtual water from a Brazilian municipality to Italy -3.52e+07 m<sup>3</sup> (3% of the total export flow)- comes from Sorriso in the State of Mato Grosso. Conversely, the highest flow of blue water -1.56e+05 m<sup>3</sup>- comes from Jaguarão, in the State of Rio Grande do Sul, located in the Brazilian Pampa. Further, the analysis at the company scale reveals that as many as 37 exporting companies can be identified exchanging to Italy;  Bianchini S.A is the largest virtual water trader (1.88 e+08 m<sup>3</sup> of green water and 3,92 e+06 m<sup>3</sup> of blue water), followed by COFCO (1,06 e+08 m<sup>3</sup> of green water and 6.62 m<sup>3</sup> of blue water)  and Cargill ( 6.96 e+07 m<sup>3</sup> of green water and 2.80 e+02 m<sup>3</sup> of blue water). By building the bipartite network of importing companies and municipalities originating the fluxes we are able to efficiently disaggregate the supply chains , providing novel tools to build sustainable water management strategies.</p>


2018 ◽  
Vol 22 (5) ◽  
pp. 3007-3032 ◽  
Author(s):  
Richard R. Rushforth ◽  
Benjamin L. Ruddell

Abstract. This paper quantifies and maps a spatially detailed and economically complete blue water footprint for the United States, utilizing the National Water Economy Database version 1.1 (NWED). NWED utilizes multiple mesoscale (county-level) federal data resources from the United States Geological Survey (USGS), the United States Department of Agriculture (USDA), the US Energy Information Administration (EIA), the US Department of Transportation (USDOT), the US Department of Energy (USDOE), and the US Bureau of Labor Statistics (BLS) to quantify water use, economic trade, and commodity flows to construct this water footprint. Results corroborate previous studies in both the magnitude of the US water footprint (F) and in the observed pattern of virtual water flows. Four virtual water accounting scenarios were developed with minimum (Min), median (Med), and maximum (Max) consumptive use scenarios and a withdrawal-based scenario. The median water footprint (FCUMed) of the US is 181 966 Mm3 (FWithdrawal: 400 844 Mm3; FCUMax: 222 144 Mm3; FCUMin: 61 117 Mm3) and the median per capita water footprint (FCUMed′) of the US is 589 m3 per capita (FWithdrawal′: 1298 m3 per capita; FCUMax′: 720 m3 per capita; FCUMin′: 198 m3 per capita). The US hydroeconomic network is centered on cities. Approximately 58 % of US water consumption is for direct and indirect use by cities. Further, the water footprint of agriculture and livestock is 93 % of the total US blue water footprint, and is dominated by irrigated agriculture in the western US. The water footprint of the industrial, domestic, and power economic sectors is centered on population centers, while the water footprint of the mining sector is highly dependent on the location of mineral resources. Owing to uncertainty in consumptive use coefficients alone, the mesoscale blue water footprint uncertainty ranges from 63 to over 99 % depending on location. Harmonized region-specific, economic-sector-specific consumption coefficients are necessary to reduce water footprint uncertainties and to better understand the human economy's water use impact on the hydrosphere.


2011 ◽  
Vol 8 (1) ◽  
pp. 763-809 ◽  
Author(s):  
M. M. Mekonnen ◽  
A. Y. Hoekstra

Abstract. This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1), vegetables (300 m3 ton−1), roots and tubers (400 m3 ton−1), fruits (1000 m3 ton−1), cereals} (1600 m3 ton−1), oil crops (2400 m3 ton−1) to pulses (4000 m3 ton−1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ−1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ−1, while this is 121 m3 GJ−1 for maize. The global water footprint related to crop production in the period 1996–2005 was 7404 billion cubic meters per year (78% green, 12% blue, 10% grey). A large total water footprint was calculated for wheat (1087 Gm3 yr−1), rice (992 Gm3 yr−1) and maize (770 Gm3 yr−1). Wheat and rice have the largest blue water footprints, together accounting for 45% of the global blue water footprint. At country level, the total water footprint was largest for India (1047 Gm3 yr−1), China (967 Gm3 yr−1) and the USA (826 Gm3 yr−1). A relatively large total blue water footprint as a result of crop production is observed in the Indus River Basin (117 Gm3 yr−1) and the Ganges River Basin (108 Gm3 yr−1). The two basins together account for 25% of the blue water footprint related to global crop production. Globally, rain-fed agriculture has a water footprint of 5173 Gm3 yr−1 (91% green, 9% grey); irrigated agriculture has a water footprint of 2230 Gm3 yr−1 (48% green, 40% blue, 12% grey).


2018 ◽  
Vol 7 (4.35) ◽  
pp. 244
Author(s):  
Nurul Azmah Safie ◽  
M.A. Malek ◽  
Z. Z. Noor

Change in climate, increasing world population and industrialization have placed considerable stress on water availability at certain places. Water Footprint accounting is a reliable technique that can be used for a better water management. This study focuses on establishing a doable methodology on water footprint accounting and assessment for direct water consumption from domestic and institutional sectors located in an urbanized environment such as Klang Valley, Kuala Lumpur. It includes investigation of Water Footprint at domestic household, schools, colleges, terminals and offices in Klang Valley. The value of water consumption, water production and water pollution will be determined using Hoekstra’s approach for green water, blue water and grey water. In addition, findings from this study will be linked to two other elements namely energy and food. This link is named as Water-Energy-Food Nexus. This study will establish the quantity and criteria of Water-Energy-Food Nexus specifically tailored to domestic and institutional sectors in Klang Valley.


Sign in / Sign up

Export Citation Format

Share Document