Rheological Properties of Polybutadienes Prepared by n-Butyllithium Initiation

1965 ◽  
Vol 38 (4) ◽  
pp. 881-892
Author(s):  
J. T. Gruver ◽  
Gerard Kraus

Abstract The flow behavior of n-butyllithium-polymerized polybutadienes was investigated as a function of molecular weight, temperature, and shear rate. At low shear rates these polymers exhibit Newtonian flow up to molecular weights of several hundred thousand so that “zero shear” Newtonian viscosities can readily be determined without the risk of long extrapolation. Above 10,000 molecular weight the Newtonian viscosities obey the well-known 3.4 power dependence on weight-average molecular weight. The entanglement spacing molecular weight is estimated at 5600. The temperature dependence of viscosity is substantially independent of molecular weight and shear stress and can be represented analytically by functions proposed in the literature. The apparent activation energy for viscous flow is not constant, but decreases with rising temperature. The flow of the polymers becomes increasingly non-Newtonian with the product of shear rate, molecular weight and Newtonian viscosity. However, the departure from Newtonian behavior is apparently less than for any polymer system whose flow behavior has been described in the literature. The indications are, therefore, that sharp molecular weight distribution and freedom from long chain branching favor Newtonian flow and that the n-butyllithium initiated polybutadienes represent some of the most perfectly linear, narrow distribution polymers known.

1967 ◽  
Vol 40 (5) ◽  
pp. 1483-1491
Author(s):  
Yoshio Ito

Abstract Nonnewtonian flow of poly(dimethyl siloxanes) of various molecular weights has been studied with a short capillary viscosimeter. The experiment covered a wide range of shear rate, from 10−1 to 3×106sec−1. Results were as follows: (1) Flow behavior of the sample changes with the degree of polymerization. For siloxanes with degrees of polymerization less than 1.55×102, flow of the fluid is newtonian throughout the whole range of shear rates; for siloxanes with degrees of polymerization from 3.22×102 to 2.63×103, flow is nonnewtonian at moderate shear rates; it again becomes newtonian at high shear rates. With degrees of polymerization more than 3.31×103, the spiral flow rises to a high shear rate. (2) Plow behavior of the samples is expressed by modifying Shishido's equation proposed for nonnewtonian polymer solutions. (3) When the observed flow curve contains its inflection point, the upper newtonian viscosity can be estimated by a new method proposed here. (4) The relations among the end correction of capillary, the pressure loss, and the shear stress proposed by Shishido for polymer solutions are applicable to poly(dimethy! siloxane) also.


1965 ◽  
Vol 38 (4) ◽  
pp. 893-906 ◽  
Author(s):  
Gerard Kraus ◽  
J. T. Gruver

Abstract The introduction of one or two long chain branches into a polybutadiene molecule to form trichain or tetrachain molecules, respectively, leads to profound changes in Theological behavior. At low molecular weights the Newtonian (zero shear) viscosity is decreased relative to a linear polymer of the same molecular weight. At molecular weights exceeding 60,000 (trichain) or 100,000 (tetrachain), the Newtonian viscosity rises rapidly above the corresponding value for a linear polybutadiene. However, non-Newtonian behavior of the branched polymers becomes more pronounced the higher the molecular weights, so that at moderate to high shear rates the viscosity of the branched polymers is uniformly lower than that of linear polymers of identical molecular weight.


1967 ◽  
Vol 40 (2) ◽  
pp. 522-531
Author(s):  
Suresh N. Chinai ◽  
William C. Schneider

Abstract Flow of concentrated polymer solutions covering molecular weights up to 150,000 was examined at shear rates up to 200,000 sec−1. The viscosity, molecular weight, and shear rate results of previous workers recognizing only single critical molecular weight M*, above which ordinary Bueche entanglements dominated the flow, were compared with our findings in which two distinct critical molecular weights, upper M* and lower M** exist. These results are compared with the theory, and new interpretations are presented.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


1932 ◽  
Vol 5 (2) ◽  
pp. 136-140
Author(s):  
H. Staudinger ◽  
W. Feisst

Abstract The molecular concept in organic chemistry is based upon the fact that the molecules, whose existence is proved by vapor density determinations, enter into chemical reactions as the smallest particles. If now it is assumed that organic molecular colloids like rubber are dissolved in dilute solution in molecular form then it must be proved that in the chemical transposition of macromolecules as well no change in the size of the macromolecules occurs. In the case of hemicolloids, therefore for molecular colloids with an average molecular weight of 1000 to 10,000, this has been proved by the reduction of polyindenes, especially of polysterenes, to hydroproducts with the same average molecular weight, and also by the fact that cyclorubbers do not change their molecular weight upon autoöxidation. The molecular weights of hemi-colloidal hydrocarbons are therefore invariable. This is much more difficult to prove in the case of rubber, although there are many more ways in which unsaturated rubber can be transposed than the stable polysterenes, polyindenes, and poly cyclorubbers. In most of the reactions with rubber, as in its action with nitrosobenzene, oxidizing agents, hydrogen halides, and halogens, an extensive decomposition takes place as a result of the instability of the molecule, which is referred to in another work. Therefore derivatives of rubber are not formed, but derivatives of hemi-colloidal decomposition products. The catalytic reduction of rubber in the cold appears to be the most suitable process of making it react without changing its molecular size in order to prove that in a chemical transposition its molecular weight remains the same.


1956 ◽  
Vol 34 (6) ◽  
pp. 1107-1117 ◽  
Author(s):  
G. C. Wood ◽  
David B. Smith

Apurinic acid prepared by mild acid treatment of sodium desoxyribonucleate and of fractions of sodium desoxyribonucleate was sufficiently stable to permit estimations of molecular weight and polydispersity. Apurinic acid from unfractionated desoxyribonucleate had a weight-average molecular weight of 25,000 and was very polydisperse. Preparations from fractionated desoxyribonucleate representing about half the original nucleic acid were much less polydisperse and had molecular weights of about 10,000.


1975 ◽  
Vol 21 (13) ◽  
pp. 1927-1931 ◽  
Author(s):  
Alfred Zettner ◽  
Peggy E Duly

Abstract We studied the effectiveness with which various charcoal preparations separate free [3H]pteroylglutamate from that complexed with milk folate binder. We tested, in various concentrations, uncoated charcoals and charcoals coated with dextrans of various molecular weights, or with albumin, hemoglobin, or polyvinylpyrrolidone with an average molecular weight of 40 000. Although there was some distinction between the "bound" and "free" fractions with all charcoals, those treated with dextrans of average molecular weights of 43 500 or 70 000, or with polyvinylpyrrolidone gave the best separation over a greater range of charcoal concentration. Uncoated charcoal and charcoals coated with albumin, hemoglobin, or dextran T10 (average molecular weight, 10 500) were least effective.


1943 ◽  
Vol 16 (3) ◽  
pp. 493-508
Author(s):  
Paul J. Flory

Abstract Experimental methods for fractionating polyisobutylene and for determining osmotic pressures have been described. The ratio π/c of osmotic pressure to concentration has been found in the case of cyclohexane solutions of polyisobutylene to vary nonlinearly with concentration, contrary to recent theories advanced by Huggins and the writer. The slope of this relationship appears to be independent of molecular weight. Reliable methods for extrapolating π/c to c=0 have been established, enabling the determination of absolute molecular weights with satisfactory precision up to values of about 1,000,000. Molecular weights of polyisobutylenes calculated from Staudinger's equation are too low; the discrepancy is more than ten-fold at high molecular weights. On the basis of data for carefully fractionated samples covering a two-hundred-fold molecular weight range, the intrinsic viscosity is found to be proportional to the 0.64 power of the molecular weight. This decided deviation from Staudinger's “law”cannot in this instance be attributed to nonlinear chain structure, as Staudinger has sought to do in other cases. This dependence of molecular weight on intrinsic viscosity leads to the definition of a “viscosity average”molecular weight which is obtained when the relationship is applied to heterogeneous polymers. The viscosity average is less than the weight average molecular weight, which would be obtained if Staudinger's equation were applicable, and greater than the number average obtained by osmotic or cryoscopic methods.


1980 ◽  
Vol 53 (1) ◽  
pp. 14-26 ◽  
Author(s):  
N. Nakajima ◽  
E. R. Harrell

Abstract Difficulties in relating long-chain branching to processability may be attributable to two causes: one is the definition, pertinent to processability, of what long branches are and the other is a method of determining long branching which is free from interference by other material variables, such as molecular weight distribution, gel, and “short” branches. Measurements of the dilute solution properties are tedious, time-consuming, and require skill for precision. In addition, the requirement for filtering the solution practically obliterates the result, regardless of how precise the measurement may be, because elastomers, as a general rule, have or are suspected to have an insoluble gel fraction. Recent advances in viscoelastic studies of model polymers show that the branches must be 2–3 times longer than the “entanglement coupling” distance in order to exhibit enhancement of viscosity in the Newtonian flow. Whereas Newtonian flow provides a precise definition of the long branches, it is not accessible for most of the elastomers. In the observed time scale, the linear viscoelastic properties as well as the steady-state viscosities are affected not only by branches but also by gels and molecular weight distribution. When these material variables are changed one at a time in the properly designed model systems, their effects are separately observable. On the other hand with a sample of unknown background, the effect of long branching is usually inseparable from those of other variables.


1983 ◽  
Vol 209 (2) ◽  
pp. 461-470 ◽  
Author(s):  
P Londei ◽  
A Teichner ◽  
P Cammarano ◽  
M De Rosa ◽  
A Gambacorta

1. The ribosomal subunits of one thermoacidophilic archaebacterium (Caldariella acidophila) and of two reference eubacterial species (Bacillus acidocaldarius, Escherichia coli) were compared with respect to ribosome mass and protein composition by (i) equilibrium-density sedimentation of the particles in CsCl and (ii) gel-electrophoretic estimations of the molecular weights of the protein and the rRNA. 2. By either procedure, it is estimated that synthetically active archaebacterial 30S subunits (52% protein by wt.) are appreciably richer in protein than the corresponding eubacterial particles (31% protein by wt.) 3. The greater protein content of the archaebacterial 30S subunits is accounted for by both a larger number and a greater average molecular weight of the subunit proteins; specifically, C. acidophila 30S subunits yield 28 proteins whose combined mass is 0.6×10(6) Da, compared with 20 proteins totalling 0.35×10(6) Da mass for eubacterial 30S subunits. 4. No differences in protein number are detected among the large subunits, but C. acidophila 50S subunits exhibit a greater number-average molecular weight of their protein components than do eubacterial 50S particles. 5. Particle weights estimated by either buoyant-density data, or molecular weights of rRNA plus protein, agree to within less than 2%. By either procedure C. acidophila 30S subunits 1.15×10(6) Da mass) are estimated to be about 300 000 Da heavier than their eubacterial counterparts (0.87×10(6) Da mass); a smaller difference. 0.15×10(6) Da, exists between the archaebacterial and the eubacterial 50S subunits (respectively 1.8×10(6) and 1.65×10(6) Da). It is concluded that the heavier-than-eubacterial mass of the C. acidophila ribosomes resides principally in their smaller subunits.


Sign in / Sign up

Export Citation Format

Share Document