SIZE, STABILITY, AND HETEROGENEITY OF APURINIC ACID

1956 ◽  
Vol 34 (6) ◽  
pp. 1107-1117 ◽  
Author(s):  
G. C. Wood ◽  
David B. Smith

Apurinic acid prepared by mild acid treatment of sodium desoxyribonucleate and of fractions of sodium desoxyribonucleate was sufficiently stable to permit estimations of molecular weight and polydispersity. Apurinic acid from unfractionated desoxyribonucleate had a weight-average molecular weight of 25,000 and was very polydisperse. Preparations from fractionated desoxyribonucleate representing about half the original nucleic acid were much less polydisperse and had molecular weights of about 10,000.

1956 ◽  
Vol 34 (1) ◽  
pp. 1107-1117
Author(s):  
G. C. Wood ◽  
David B. Smith

Apurinic acid prepared by mild acid treatment of sodium desoxyribonucleate and of fractions of sodium desoxyribonucleate was sufficiently stable to permit estimations of molecular weight and polydispersity. Apurinic acid from unfractionated desoxyribonucleate had a weight-average molecular weight of 25,000 and was very polydisperse. Preparations from fractionated desoxyribonucleate representing about half the original nucleic acid were much less polydisperse and had molecular weights of about 10,000.


1977 ◽  
Vol 163 (3) ◽  
pp. 427-432 ◽  
Author(s):  
R H Swisher ◽  
M L Landt ◽  
F J Reithel

The weight-average molecular weight of the Mo-Fe protein isolated from Azotobacter vinelandii has been determined by sedimentation-equilibrium techniques. In buffer, the value is 245000+/-5000; in 8M-urea, the value is 61000+/-1000. The protein was separated into two components by chromatography on CM-cellulose in 7M-urea, pH 4.5. These components have similar molecular weights but were shown to differ in charge, amino acid content and arginine-containing peptides. It is proposed that the tetramer has the subunit composition (nalpha2nbeta2).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Tianming Gao ◽  
Ruihong Xie ◽  
Linghong Zhang ◽  
Hongxing Gui ◽  
Maofang Huang

The aim of this work is to introduce a simple and rapid method for characterizing the molecular weight parameters and other molecular structure parameters of natural rubber (NR) using a rubber process analyzer (RPA). In this work, NR of different molecular weights was prepared by milling. Molecular weight parameters were measured by gel permeation chromatography coupled with laser light scattering (GPC-LLS) for comparison with RPA results. It was verified that increasing of milling time leads to a decrease of the number-average molecular weight (M-n), weight-average molecular weight (M-w), and molecular weight distribution (MWD). The dynamic and rheological properties were evaluated on RPA by tests of strain sweep, frequency sweep, and stress relaxation. These results were used to characterize the average molecular weight, MWD, and viscosity of NR and were found to agree with those from GPC-LLS. This convenient and rapid technology for characterizing NR molecular weight parameters would be especially useful in the elastomer industry.


1956 ◽  
Vol 34 (4) ◽  
pp. 445-450 ◽  
Author(s):  
W. Donald Graham ◽  
Odette Patry ◽  
E. Helen Jackman

Failure to consider the presence of up to 16% by volume of methanol in solutions of dextran fractions had a very marked effect on apparent intrinsic viscosity determinations (the term apparent signifies that measurements were made assuming that the solvent was water only). Unless methanol were removed or otherwise taken into account, high erroneous results were obtained. Apparent weight average molecular weights determined by light scattering were not significantly affected at these alcohol concentrations. The relations found over the range 0 to 16% methanol for dextran samples with weight average molecular weights of 265,000, 155,000, and 72,000 held for the latter sample up to 44% methanol. In the higher range of alcohol concentration the apparent weight average molecular weight was depressed. The true intrinsic viscosity of dextran solutions decreased as methanol concentration was increased.


1995 ◽  
Vol 60 (3) ◽  
pp. 489-497 ◽  
Author(s):  
Hynek Balcar ◽  
Jan Sedláček ◽  
Marta Pacovská ◽  
Vratislav Blechta

Catalytic activity of the tungsten aryloxo complexes WCl5(OAr) and WOCl3(OAr), where Ar = 4-t-C4H9C6H4, 2,6-(t-C4H9)2C6H3, 2,6-Cl2C6H3, 2,4,6-Cl3C6H2, and 2,4,6-Br3C6H2 in polymerization of phenylacetylene (20 °C, monomer to catalyst molar ratio = 1 000) was studied. The activity of WCl5(OAr) as unicomponent catalysts increases with increasing electron withdrawing character of the -OAr ligand. Addition of two equivalents of organotin cocatalysts (Me4Sn, Bu4Sn, Ph4Sn, Bu3SnH) to WCl5(O-C6H2Cl3-2,4 ,6) has only slight positive effect (slightly higher polymer yield and/or molecular weight of poly(phenylacetylene)s was achieved). However, in the case of WOCl3(O-C6H3Cl2-2, 6) catalyst, it enhances the activity considerably by eliminating the induction period. Poly(phenylacetylene)s prepared with the catalysts studied have weight-average molecular weight ranging from 100 000 to 200 000. They are trans-prevailing and have relatively low molar fraction of monomer units comprised in cyclohexadiene sequences (about 6%).


TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


BioResources ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. 4137-4151 ◽  
Author(s):  
Aikfei Ang ◽  
Zaidon Ashaari ◽  
Edi Suhaimi Bakar ◽  
Nor Azowa Ibrahim

An alkali lignin (OL) with a weight-average molecular weight (Mw) of 11646 g/mol was used to prepare low-molecular weight lignin for resin synthesis. The low-molecular weight lignin feedstock was obtained via base-catalysed depolymerisation (BCD) treatments at different combined severity factors. Sequential fractionation of the OL and BCD-treated lignins using organic solvents with different Hildebrand solubility parameters were used to alter the homogeneity of the OL. The yield and properties of OL itself and OL and BCD-treated OL dissolved in propan-1-ol (F1), ethanol (F2), and methanol (F3) were determined. Regardless of the treatment applied, a small amount of OL was dissolved in F1 and F2. The BCD treatment did not increase the yield of F1 but did increase the yields of F2 and F3. Gel permeation chromatography (GPC) showed that the repolymerization reaction occurred in F3 for all BCD-treated OL, so these lignins were not suitable for use as feedstocks for resin production. The GPC, 13Carbon-nuclear magnetic resonance, and Fourier transform infrared spectroscopy analyses confirmed that the F3 in OL exhibited the optimum yield, molecular weight distribution, and chemical structure suitable for use as feedstocks for resin synthesis.


In the present study, the influence of dextransucrase of Weissella cibaria NITCSK4 (DSWc4), sucrose concentration, and reaction temperature on the yield of low molecular weight dextran (LMWD-DexWc4) was investigated using mixed level Taguchi design and back propagation neural network (BPNN). BPNN model with three neurons in a hidden layer generated a low mean squared error (MSE). The determination coefficients (R2 -value) for ANN and Taguchi models were 0.991 and 0.998, respectively. Considering absolute average deviation (AAD) and MSE, Taguchi model is more adequate. Among three factors, the percentage yield of low molecular weight of dextran is invariably dependent on the sucrose concentration. The study suggested that a low sucrose concentration (3% w/v), DSWc4 (0.25 IU/ml) and slightly high temperature (35°C) ultimately favored the production of LMWD-DexWc4 (91.639%). LMW-DexWc4 produced by DSWc4 at optimized conditions was analyzed. The weight average molecular weight of LMW-DexWc4 was calculated using M-H expression, found to be 85775 (≈90 kDa). The relative percentage error between the number and weight average molecular weight was found to be less (4.42%). The polydispersity (PD) index of the LMW-DexWc4 was found to be 0.9576 and the value is close to 1. The PD value depicted that the molecular weight distribution of dextran was narrowly dispersed.


Sign in / Sign up

Export Citation Format

Share Document