long chain branching
Recently Published Documents


TOTAL DOCUMENTS

336
(FIVE YEARS 14)

H-INDEX

42
(FIVE YEARS 0)

2021 ◽  
pp. 009524432110510
Author(s):  
Mousumi De Sarkar ◽  
Nishant Chandel ◽  
Shib Shankar Banerjee ◽  
Subhabrata Saha ◽  
Anil K Bhowmick ◽  
...  

High melt strength polypropylene (HMS-PP) with a long-chain branched structure is a modified form of polypropylene (PP) which has basic properties of regular PP but with superior melt drawability. This paper reports on the development of gel-free HMS-PP from a linear isotactic PP through the introduction of long-chain branching on its backbone via a reactive extrusion process, using dicetyl-peroxydicarbonate (PODIC) alone or in combination with a coagent. The melt strength and the mechanical properties such as impact and flexural strength of PP showed improvements with the modification with PODIC. 5000 ppm by weight of PODIC was found to provide the best balance of properties. The efficacies of zinc diethyldithiocarbamate (ZDC) and tetramethyl thiuram disulphide (TMTD) as coagents in combination with PODIC to augment properties of HMS-PP further were explored. TMTD offered slightly enhanced performance benefits as compared to ZDC at an optimized concentration of 100 ppm by weight. The application potential of HMS-PP in thermoplastic elastomeric blends of HMS-PP with ethylene-propylene-diene monomer (EPDM) rubber at a fixed ratio of 35/65 by weight was also investigated. Structure-property correlations were established between the extent of long-chain branching in the modified PP and the properties of the resultant thermoplastic elastomeric composition.





Author(s):  
Peng Chen ◽  
Ling Zhao ◽  
Xiulu Gao ◽  
Zhimei Xu ◽  
Zhen Liu ◽  
...  


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3217
Author(s):  
Leslie Poh ◽  
Esmaeil Narimissa ◽  
Manfred H. Wagner

The transient elongational data set obtained by filament-stretching rheometry of four commercial high-density polyethylene (HDPE) melts with different molecular characteristics was reported by Morelly and Alvarez [Rheologica Acta 59, 797–807 (2020)]. We use the Hierarchical Multi-mode Molecular Stress Function (HMMSF) model of Narimissa and Wagner [Rheol. Acta 54, 779–791 (2015), and J. Rheology 60, 625–636 (2016)] for linear and long-chain branched (LCB) polymer melts to analyze the extensional rheological behavior of the four HDPEs with different polydispersity and long-chain branching content. Model predictions based solely on the linear-viscoelastic spectrum and a single nonlinear parameter, the dilution modulus GD for extensional flows reveals good agreement with elongational stress growth data. The relationship of dilution modulus GD to molecular characteristics (e.g., polydispersity index (PDI), long-chain branching index (LCBI), disengagement time τd) of the high-density polyethylene melts are presented in this paper. A new measure of the maximum strain hardening factor (MSHF) is proposed, which allows separation of the effects of orientation and chain stretching.



2021 ◽  
Vol 36 (4) ◽  
pp. 403-409
Author(s):  
K. Iiba ◽  
W. Takarada ◽  
T. Kikutani

Abstract In the melt blowing process, the molten polymers extruded from nozzles are elongated by high-velocity and high-temperature air flow. In this study, with the aim of stabilizing the melt blowing process for producing nonwoven webs with fine diameter fibers, the effect of the control of polymer rheology by the introduction of either low melt flow rate (MFR) polypropylene (PP) or long chain branched PP (LCB-PP) to regular high MFR PP was investigated. Introduction of low MFR PP into regular PP increased shear viscosity and fibers of larger diameter were produced in the melt blowing process, while introduction of low MFR LCB-PP suppressed the elongational viscosity reduction with the increase of strain rate, and eventually spinning was stabilized. It was found that the blending of an optimum amount of LCB-PP to regular PP caused the stabilization of the melt blowing process. As a result, the formation of nonwoven webs consisting of fine fibers of rather uniform diameter distribution could be achieved.



2021 ◽  
pp. 50993
Author(s):  
Chia‐Ying Tsai ◽  
Chao‐Shun Chang ◽  
Mingzhen Zhao ◽  
Hung‐Jue Sue


2021 ◽  
Author(s):  
Géraldine Cabrera ◽  
Gérard Pichon ◽  
Abderrahim Maazouz ◽  
Khalid Lamnawar

This paper deals with polyisobutylene (PIB) migration through post-consumer agricultural waste multilayer films based on four linear low-density polyethylene (LLDPE) matrices. Connections between shear, elongational rheology and tack surface properties were revealed for both model and recycled blends. The effects of aging time and temperature were investigated and rationalized, depending on the short- and long-chain branching in LLDPE matrices as well their polyethylene (PE) crystallization. Linear and nonlinear viscoelastic properties were influenced by even small amounts of PIB. This migration also influenced slippage in the steady-flow regime. Transient uniaxial extensional properties were shown to be very sensitive to the presence of PIB, which seems to hold back the PE strain hardening properties. Therefore, the axial force and the surface friction coefficient were determined and discussed in correlation with bulk rheological findings. These results help unveil new insights about the physical mechanisms governing PIB migration with or without fillers inhibiting this migration in recycled films.



Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1123
Author(s):  
Helmut Münstedt

Rheological measurements of polymer melts are widely used for quality control and the optimization of processing. Another interesting field of rheology is to provide information about molecular parameters of polymers and the structure build-up in heterogeneous polymeric systems. This paper gives an overview of the influence of molar mass, molar mass distribution and long-chain branching on various rheological characteristics and describes the analytical power following from established relations. With respect to applications, we discuss how rheological measurements can be used to gain insight into the thermal stability of a material. A special impact lies in the demonstration, how long-chain branching can be analyzed using rheological means like the zero-shear viscosity as a function of molar mass and strain hardening occurring in elongation. For contributions to branching analysis, the thermorheological behavior and activation energies are particularly discussed. The use of elastic quantities in the case of mechanical pretreatment effects is briefly addressed. The influence of fillers on recoverable properties in the linear range of deformation is analyzed and the role of their specific surface area for interactions described. It is shown how the fundamental results can be applied to study the state of nanoparticle dispersions obtained under special conditions. Furthermore, it is demonstrated that the findings on polymer/filler systems are the base of structure analyses in heterogeneous polymeric materials like polyvinylchloride (PVC) and acrylonitrile–butadiene–styrene copolymers (ABS).



2021 ◽  
Author(s):  
Jun Wang ◽  
Le Yang ◽  
Xiaolong Li ◽  
Zhu Luo ◽  
Jianjun Li ◽  
...  

Abstract Incompatible polypropylene (PP) and polyethylene (PE) are difficult to separate in mixed recycling streams such as waste plastic packaging, which makes these polyolefin mixtures unsuitable for high-quality products. In this work, based on the free radical branching reaction, a co-branching reaction of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) blends was carried out in the presence of the peroxide, free radical regulator and multifunctional acrylate monomer, and a star-like long-chain branching (LCB) copolymer was acquired. The effect of in situ compatibilization on the structure and mechanical properties of iPP/HDPE was investigated, and the compatibilization mechanism was discussed. Results showed that the mechanical properties of the modified blends were largely improved, and efficient in-situ compatibilization of iPP and HDPE could be taken place in a wide process window. Moreover, the size of the dispersed phase in the modified blend was clearly decreased, and the interfacial thickness increased. Compared with the pure iPP/HDPE blend, the initial crystallization temperature of iPP in the modified iPP/HDPE blend was increased, and long branched chains of the LCB copolymer were physically entangled with the chemical identical homopolymers or even participate in the crystallization of iPP and HDPE. Thanks to the in situ compatibilization strategy, the compatibility of iPP/HDPE was significantly improved.



2021 ◽  
Vol 60 (9) ◽  
pp. 3770-3778
Author(s):  
Chia-Ying Tsai ◽  
Chao-Shun Chang ◽  
Hung-Jue Sue


Sign in / Sign up

Export Citation Format

Share Document