Influence of Some Parameters on the Solution of a Thermal Model of Vulcanization

1993 ◽  
Vol 66 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Jacques Burger ◽  
Nicole Burger ◽  
Marc Pogu

Abstract The thermal behavior of a piece of rubber during a vulcanization process is modelized by a set of two coupled differential equations. The first one is a classical nonlinear heat equation while the second is a reaction equation. The aim of this article is first to solve numerically the two equations using a finite element procedure for the partial differential equation and a Runge-Kutta like scheme for the reaction equation, and then to study the sensitivity of the solution to variations in some parameters.

2007 ◽  
Vol 10 (5) ◽  
pp. 467-473 ◽  
Author(s):  
A. Saygun ◽  
M. H. Omurtag ◽  
E. Orakdogen ◽  
K. Girgin ◽  
S. Kucukarslan ◽  
...  

In this paper, the torsional rigidity of the composite sections formed by different materials is obtained by using a finite element procedure. In the derivation of the differential equation, the Saint-Venant's stress function was used. The obtained partial differential equation was discretized by finite elements to get the potentials in the nodal points. After the calculations of the unknown potentials on the composite cross-section, the torsional rigidity is calculated by integrating the potentials on the solution domain. To test the validity of the proposed algorithm, the available analytical and numerical results from the previous studies were studied. It was seen that this new algorithm is efficient and simpler than the previous ones.


2009 ◽  
Vol 20 (02) ◽  
pp. 313-322
Author(s):  
PILWON KIM

Numerical schemes that are implemented by interpolation of exact solutions to a differential equation naturally preserve geometric properties of the differential equation. The solution interpolation method can be used for development of a new class of geometric integrators, which generally show better performances than standard method both quantitatively and qualitatively. Several examples including a linear convection equation and a nonlinear heat equation are included.


2021 ◽  
Vol 4 (1) ◽  
pp. 1-18
Author(s):  
Gokul KC ◽  
Ram Prasad Dulal

Poisson equation is an elliptic partial differential equation, a generalization of Laplace equation. Finite element method is a widely used method for numerically solving partial differential equations. Adaptive finite element method distributes more mesh nodes around the area where singularity of the solution happens. In this paper, Poisson equation is solved using finite element method in a rectangular domain with Dirichlet and Neumann boundary conditions. Posteriori error analysis is used to mark the refinement area of the mesh. Dorfler adaptive algorithm is used to refine the marked mesh. The obtained results are compared with exact solutions and displayed graphically.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 766-779
Author(s):  
Taha Aziz ◽  
Aeeman Fatima ◽  
Chaudry Masood Khalique

AbstractThe invariant approach is employed to solve the Cauchy problem for the bond-pricing partial differential equation (PDE) of mathematical finance. We first briefly review the invariant criteria for a scalar second-order parabolic PDE in two independent variables and then utilize it to reduce the bond-pricing equation to different Lie canonical forms. We show that the invariant approach aids in transforming the bond-pricing equation to the second Lie canonical form and that with a proper parametric selection, the bond-pricing PDE can be converted to the first Lie canonical form which is the classical heat equation. Different cases are deduced for which the original equation reduces to the first and second Lie canonical forms. For each of the cases, we work out the transformations which map the bond-pricing equation into the heat equation and also to the second Lie canonical form. We construct the fundamental solutions for the bond-pricing model via these transformations by utilizing the fundamental solutions of the classical heat equation as well as solution to the second Lie canonical form. Finally, the closed-form analytical solutions of the Cauchy initial value problems for the bond-pricing model with proper choice of terminal conditions are obtained.


Filomat ◽  
2021 ◽  
Vol 35 (8) ◽  
pp. 2617-2628
Author(s):  
K.Y. Kung ◽  
Man-Feng Gong ◽  
H.M. Srivastava ◽  
Shy-Der Lin

The principles of superposition and separation of variables are used here in order to investigate the analytical solutions of a certain transient heat conduction equation. The structure of the transient temperature appropriations and the heat-transfer distributions are summed up for a straight mix of the results by means of the Fourier-Bessel arrangement of the exponential type for the investigated partial differential equation.


Sign in / Sign up

Export Citation Format

Share Document