Metal Halides in Vinylpyridine Rubber (PBR)

1962 ◽  
Vol 35 (2) ◽  
pp. 453-466 ◽  
Author(s):  
W. F. Brucksch

Abstract It has been found that PBR is made stronger by the addition of certain metal halides. A kind of cross-linking results, probably by coordination of pyridine nitrogens. This crosslinking can be used as a supplement to that produced by curing with sulfur. The result is improved physical properties in vulcanized products. Gum stocks show higher tensile strength. Filled stocks show higher tensile strength and elongation at 100° C and greater resistance to abrasion and to cut-growth. The system also has the capacity to develop high modulus. Because of this, lesser amounts of filler may be used. The result is a compound which has hysteresis properties like a carcass stock and abrasion resistance like a tread stock. This is an interesting combination of properties, which should fine useful applications.

1959 ◽  
Vol 32 (2) ◽  
pp. 614-627 ◽  
Author(s):  
J. N. Short ◽  
G. Kraus ◽  
R. P. Zelinski ◽  
F. E. Naylor

Abstract The physical properties of polybutadiene vulcanizates have been measured as a function of polymer microstructure. Although the over-all properties of any one polybutadiene are determined by the relative ratio of cis, trans and vinyl units in the polymer chain, marked changes in physical properties do not occur until a relatively pure configuration is approached or unless the raw polymer displays crystallinity. Thus, polybutadienes containing more than 85 per cent cis, trans or vinyl units are characteristically different from each other and the differences are accentuated as the isomeric forms approach 100 per cent of a given configuration. Polybutadiene of 95 per cent cis configuration displays very low heat generation and high resilience (equaling natural rubber in these properties) and excellent abrasion resistance. trans-Polybutadiene (90 per cent), a crystalline plastic in the raw state, becomes rubbery after vulcanization. Gum vulcanizates possess high tensile strength, and tread stocks display high modulus and tensile strength, high hardness and fair hysteresis properties. Vulcanizates of amorphous 94 per cent vinyl polybutadiene are characterized by fair tensile properties, low hysteresis, and poor low temperature properties. Crystalline syndiotactic polybutadiene, 70 per cent vinly, displays much higher gum and tread tensile strengths than its amorphous counterpart. Amorphous polybutadienes containing less than 70–80 per cent of any one configuration are generally similar in most properties, and resemble emulsion polybutadiene in many respects. The wide range of properties of the various polybutadienes makes them suitable for many applications. cis-Polybutadiene is an excellent tire rubber, which has given as much as 40 per cent greater abrasion resistance than natural rubber in passenger tire tests. Heavy duty 10:00 × 20 truck tires fabricated with a 1:1 blend of cis-polybutadiene and natural rubber in the treads have given slightly better abrasion ratings and lower running temperatures than control tires fabricated entirely from natural rubber. Amorphous 80 per cent cis-polybutadiene has been found to possess exceptionally good low temperature properties, far superior to present arctic-type unsaturated elastomers, trans-Polybutadienes by virtue of their high modulus, high tensile strength, and high hardness could be utilized in the preparation of hard rubber goods, floor tiles, and shoe soles. While none of these polybutadienes is yet available commercially, their unusual properties and potential applicability in many areas should lead to their manufacture in the future.


2019 ◽  
Author(s):  
Ruogu Tang

<div>A series of NR/SBR vulcanizates were prepared by conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2009 ◽  
Vol 16 (05) ◽  
pp. 715-721 ◽  
Author(s):  
CHAOXIA WANG ◽  
LI CHEN

The silica sol was applied onto 1, 2, 3, 4-butanetetracarboxylic acid (BTCA) finished cotton fabrics with the attempt to improve the physical properties especially the tensile strength which had a big loss in the previous anti-crease finishing processing. The parameters including the dosage of the coupling agent, the concentration and pH of the sol and the processing methods were studied in detail. Compared to the sample finished with BTCA, 11.8% of the increase in the crease recovery angle and 18.6% of the enhancement in the tensile strength of the cotton fabric also treated with silica sol in the better selected conditions were obtained. The abrasion resistance was also improved.


1945 ◽  
Vol 18 (2) ◽  
pp. 405-406
Author(s):  
F. N. Upham

Abstract The measure of the curing rate of rubber stocks has, for many years, been based on tensile strength values or factors involving tensile strength. From these data, a number of rubber stocks have been termed flat-curing, but if the rate of cure be related to the resistance to abrasion, the stocks would not be regarded as possessing that property. It appears that the abrasion test is more sensitive to changes in the state of cure than the tensile strength test, and it is therefore suggested that curing rates should be based on abrasion test data.


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Jian Zheng ◽  
Zhaoge Huang

<div>A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2020 ◽  
Author(s):  
Wenfa Dong ◽  
Ruogu Tang

<div>The water industry used NR was selected for blending with SBR. A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2019 ◽  
Author(s):  
Ruogu Tang

<div>A series of NR/SBR vulcanizates were prepared by conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


2020 ◽  
Author(s):  
Ruogu Tang ◽  
Wenfa Dong

<div>A series of NR/SBR vulcanizates were prepared through three different vulcanization systems, conventional vulcanization (CV), effective vulcanization (EV) and semi-effective vulcanization (SEV) respectively, basing on each formulation and optimum curing time. We examined the mechanical properties of NR/SBR vulcanizates including tensile strength, tear strength, elongation at break, modulus, Shore A hardnessand and relative volume abrasion. The results indicated that NR/SBR vulcanizates prepared in different systems differed in mechanical properties. Vulcanizates prepared via CV showed higher tensile and tear strength; vulcanizates prepared via EV had high modulus and hardness, and vulcanizates prepared via SEV performed high abrasion resistance. </div>


1947 ◽  
Vol 20 (3) ◽  
pp. 747-759
Author(s):  
John O. Cole ◽  
James E. Field

Abstract The effect of heat aging on the physical properties of an elastomer is generally considered the result of oxidation, which produces both chain scission and cross-linking in the polymer. Early in the development of GR-S, a marked difference in the aging of GR-S and natural rubber vulcanizates was observed. From the effect of aging on hardness, tensile strength, modulus, and elongation it appeared that cross-linking occurred more rapidly than chain scission with GR-S, but the reverse was true with natural rubber. The work reported here was undertaken to provide a better understanding of the differences in aging of GR-S and natural rubber and to introduce new experimental methods for studying the mechanism of oxidation and antioxidant action in elastomers.


1976 ◽  
Vol 49 (4) ◽  
pp. 978-991 ◽  
Author(s):  
J. R. Dunn

Abstract In blends of elastomers and thermoplastics one component may be regarded as reinforcing the other. Examples are enhancement of tensile strength, tear strength, abrasion resistance, and modulus of elastomers by thermoplastics and improvement of impact resistance and environmental stress-cracking resistance of thermoplastics by elastomers. Certain elastomer-thermoplastic blends are rapidly growing in importance as thermoplastic rubbers because they combine the processing characteristics of plastics with physical properties similar to those of vulcanized elastomers.


Sign in / Sign up

Export Citation Format

Share Document