recovery angle
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Fisaha Asmelash ◽  
Million Ayele

This paper aims at the extraction and application of eco- and user-friendly natural gum obtained from Commiphora Africana tree. The result obtained is also compared with fabric treated with a commercial softener of the same concentration. The gum was extracted by puncturing the stem of the plant and the extracted gum was applied directly to 100% cotton fabric through a padding process with different concentrations of extracted gum (i.e., 20 gram per litre (g/l), 25 g/l, and 30 g/l). Another similar fabric sample was treated with a silicon softener of the same concentration. The fabric samples treated with both natural gum and silicon softener were tested for their stiffness, crease recovery, and drapability. The results show that the change in fabric softness depends on the concentration of softener used in both cases. As the concentration of the softener increased, there was a decrease in bending length and drape coefficient for both fabric samples. The drape coefficient of fabric sample treated with natural gum has a comparable result with fabric treated with silicon/commercial softener. Maximum increases in recovery angle were seen in fabric treated with natural gum at a concentration of 30 g/l.


2021 ◽  
pp. 004051752110678
Author(s):  
Ting Liang ◽  
Kelu Yan ◽  
Tao Zhao ◽  
Bolin Ji

A novel multiple-reactive-site crosslinking agent, P(TAA‒AA), was developed from transaconitic acid and acrylic acid in this study. Cotton fabrics with durable wrinkle-resistant properties were obtained by crosslinking with P(TAA‒AA), which benefited from the multifunctional carboxyl groups of crosslinking agents and the three-dimensional crosslinking inside cotton fibers. The wrinkle-resistant properties of P(TAA‒AA)-modified fabrics were evaluated and compared with those of other polycarboxylic acid-treated fabrics, and the P(TAA‒AA)-modified fabrics showed a wrinkle recovery angle of 262° as high as the 1,2,3,4-butanetetracarboxylic acid-modified fabrics while maintaining nearly two-fold higher tearing strength retention (62.9%), and they showed a much higher value of whiteness index than the citric acid-modified fabrics. This demonstrated that the obtained P(TAA‒AA) is an ideal polycarboxylic acid already known to date simultaneously to realize the high wrinkle recovery angle and high tearing strength retention for treated cotton fabrics. The Raman depth mapping images and the scanning electron microscope images of P(TAA‒AA)-modified samples indicated that P(TAA‒AA) molecules can diffuse into the amorphous regions of the cellulose fibers and form crosslinking bridges between cellulose chains. The multiple reactive carboxyl groups in P(TAA‒AA) may form three or more ester bonds between the P(TAA‒AA) molecule and different cellulose chains, which were regarded as the main contribution to the high crosslinking effectiveness of the P(TAA‒AA)-modified fabrics.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abolfazl Zare ◽  
Pedram Payvandy

Purpose The purpose of this study is the chemical grafting of β-Cyclodextrin (β-CD) onto silk fabrics by the use of butane tetracarboxylic acid (BTCA) as a crosslinking agent and nano-TiO2 (NTO) as a catalyst. The effects of different parameters involved in this particular process, e.g. β-CD, BTCA and NTO concentrations, are examined using the artificial neural network (ANN). The method is evaluated for its ability to predict certain properties of treated fabrics, including grafting yield, dry crease recovery angle (DCRA) and wet crease recovery angle (WCRA), tensile strength, elongation at break and methylene blue dye absorption. Design/methodology/approach This study was conducted to describe the cross-linking of silk with 1,2,3,4-BTCA as a crosslinking agent in a wet state at low temperatures using NTO catalyst to improve the dry and wet wrinkle recovery (DCRA and WCRA) of silk fabrics. An ANN was also used to model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples. Findings According to the results, the wet and dry wrinkle recovery of the silk fabrics was improved for about 38% and 11%, respectively, as compared to the non-cross-linked fabrics, without significantly affecting the tensile strength retention of the fabrics. Originality/value This research model and analyze the effects of BTCA, β-CD and NTO concentrations on the grafting percentage and some properties of the treated samples for the first time.


2021 ◽  
Author(s):  
Abdul Malik Rehan ◽  
Zamir Ahmed Abro ◽  
Muhammad Ali Zeeshan ◽  
Ahmer Hussain Shah ◽  
Syed Qutaba Bin Tariq

Abstract In this paper, cotton fabric processed with Corona and different amounts of biodegradable cationic softener are studied. Properties such as bending length, water absorption time, and crease recovery angle are therefore measured. By increasing the amount of cationic softener, bending length is observed to be decreased and time for water absorption and crease recovery angle of the sample increased. Scanning Electron Microscopy (SEM) is carried out for the investigation of surface morphology and the micrographs revealed cracking or etching effect on the cotton fabric treated with Corona. However, Attenuated Total Reflection- Fourier Transform Infrared Spectroscopy (ATR-FTIR) analysis confirmed the chemical change on the surface of the Corona treated cotton fabric which is due to the increase of hydrophilic groups. The results also indicated that the presence of the cationic softener on the Corona treated cotton fabric improved the hydrophobicity. The judgments are in close agreement with the findings of water absorption time, bending length, and crease recovery angle.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abolfazl Zare

Purpose The purpose of this paper is to assess the possibility of cross-linking silk fabric using citric acid (CA) as the cross-linking agent and nano-TiO2 (NTO) particles as a catalyst at low temperature and under UV irradiation. This paper also assesses the possibility of treated samples with suitable combinations of CA and NTO to impart multiple functional properties such as self-cleaning and antimicrobial properties. Design/methodology/approach In this research, ß-cyclodextrin (ß-CD) grafted onto silk fabric using CA as a crosslinking agent and NTO particles as a catalyst through a pad-dry-cure technique and with UVA irradiation. The effects of different concentrations of CA, ß-CD and NTO particles on some properties of the treated samples are evaluated, and the optimum finishing conditions are obtained. The author also investigated the washing durability of the modified product after ten times of washing. Findings The results showed that CA plays the role of a linking agent through an esterification reaction with the hydroxyl groups of both ß-CD and silk fabrics and improves the durability of materials on the textile surface. Also, the silk fabrics treated with CA only were found to have excellent photocatalytic properties and better antibacterial activity than the control sample and the fabrics treated with a mixture of ß-CD/CA. Originality/value This study was conducted to achieve multiple functions such as antibacterial and photocatalytic activities, good dry crease recovery angle and wet crease recovery angle behavior without a significant adverse effect on the Yellowness index and tensile properties for treated silk fabrics.


Author(s):  
Lakshmi Pooja Sanku ◽  
R. Neelarani ◽  
Khateeja Sulthana Shaik ◽  
K Pushpalatha

Starching is one of the most significant finish given to sarees. Apart from minimizing wrinkles, starch/sizing material protects fiber due to its polished appearance provided by adequate starch concentrations while finishing the textile material. Hence, the present study is conducted on standardization or optimization of selected starches (Mango kernel starch (MKS), Jack fruit seed (JFS) starch, Bhagavathi gum (BG)/synthetic gum, Maize starch (MS) and Revive liquid (RL)) for 1 and 3 percent concentrations as per the consumer requirement on cotton fabric. All the sized samples were tested for stiffness, crease recovery angle, and tear strength parameters assessing against control sample. Results showed that, for all the tested samples, the crease recovery angle of control sample is more in both ways and other treated samples have higher angle in warp ways than the weft ways. It was also observed, with an increase in concentration there was an increase in the angle. Similarly, the bending length and tear strength is more towards warp direction than weft direction in all the tested samples. Bending length is higher in 3 percent than 1 percent starch concentration for both warp. Amongst all the starched samples, MSK has good tear strength in both directions of the fabric. Based on the study it can be concluded that, depend on the type of the material one and three per cent of the starches from natural sources can be efficiently used at domestic level.


2021 ◽  
Vol 11 (10) ◽  
pp. 4641
Author(s):  
Jiangfei Lou ◽  
Jinfang Zhang ◽  
Dan Wang ◽  
Xuerong Fan

In the anti-wrinkle finishing of cotton fabrics, the decreased dyeability of the finished fabrics has always been a difficult problem. A new anti-wrinkle finishing mode was developed to solve this problem by changing the finishing sequence of fabric dyeing and anti-wrinkle. In this research, the partial oxidization of raffinose with sodium periodate generated multiple aldehydes, which acted as multifunctional cross-linkers and endowed cotton fabrics with anti-wrinkle and hydrophilic properties. The structural characteristics of oxyRa were analyzed by FTIR and 13C-NMR. Through response surface methodology (RSM), the finishing model of oxyRa was established from the influencing factors of catalyst concentration, pH, curing temperature and time, and the optimized finishing process: the catalyst concentration was 20.12 g/L, pH was 4.32, curing temperature was 150 °C and curing time was 120 s. Under this condition, the predicted wrinkle recovery angle (WRA) of the finished fabric was up to 249.76°, Tensile strength (TS) was 75.62%, Whiteness index (WI) was 70.69. Importantly, comparing the anti-wrinkle and dyeing performance of the fabric with anti-wrinkle and then dyeing and anti-wrinkle after dyeing, the oxyRa-treated fabrics showed better dyeing properties compared with previously reported dimethyldihydroxyethylene urea (DMDHEU), glutaraldehyde (GA), and 1,2,3,4-butanetetracarboxylic acid (BTCA). Analysis of the combined mechanism of different finishing agents and cellulose, demonstrated the reason why oxyRa can be used to change the order of dyeing and anti-wrinkle finishing.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 767
Author(s):  
Jiangfei Lou ◽  
Jinfang Zhang ◽  
Shengxiang Xu ◽  
Dan Wang ◽  
Xuerong Fan

In anti-wrinkle finishing, the crosslinking degree of fabric is mainly determined by wrinkle recovery angle, stiffness, and viscosity, these indicators can only reflect the finishing effect from a macro perspective, which cannot reflect whether the crosslinking is sufficient, and it is difficult to quantify the crosslinking degree. In this paper, we combined the Kjeldahl method with the Arrhenius formula and proposed a method to analyze the crosslinking degree of dimethyloldihydroxyethyleneurea (two-dimensional (2D) resin) with cotton cellulose during delayed-cure finishing for the first time. The nitrogen content of completed fabrics during storage was measured by the Kjeldahl method, and the reaction rate equation of the 2D resin and cellulose under normal temperature conditions was calculated. The results show that the nitrogen content is more suitable to indicate the crosslinking degree, and the apparent activation energy was 28.271 kJ/mol and the pre-finger factor was 0.622, which indicated that the 2D resin was prone to cross-linking with cotton fabrics during storage. During long-term storage, the relative errors between the calculated and measured values of the nitrogen content were within ±5%, and the accuracy was higher than the traditional evaluation method. The stability of 2D resins during the storage of delayed-curing finishing was also analyzed through this method.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 697
Author(s):  
Wei-Chun Lin ◽  
Fang-Yu Fan ◽  
Hsing-Chung Cheng ◽  
Yi Lin ◽  
Yung-Kang Shen ◽  
...  

In these times of Industrial 4.0 and Health 4.0, people currently want to enhance the ability of science and technology, to focus on patient aspects. However, with intelligent, green energy and biomedicine these days, traditional three-dimensional (3D) printing technology has been unable to meet our needs, so 4D printing has now arisen. In this research, a shape-memory composite material with 3D printing technology was used for 4D printing technology. The authors used fused deposition modeling (FDM) to print a polylactic acid (PLA) strip onto the surface of paper to create a shape-memory composite material, and a stimulus (heat) was used to deform and recover the shape of this material. The deformation angle and recovery angle of the material were studied with various processing parameters (heating temperature, heating time, pitch, and printing speed). This research discusses optimal processing related to shape-memory situations of stimulus-responsive composite materials. The optimal deformation angle (maximum) of the stimulus-responsive composite material was found with a thermal stimulus for an optimal heating temperature of 190 °C, a heating time of 20 s, a pitch of 1.5 mm, and a printing speed of 80 mm/s. The optimal recovery angle (minimum) of this material was found with a thermal stimulus for an optimal heating temperature of 170 °C, a heating time of 90 s, a pitch of 2.0 mm, and a printing speed of 80 mm/s. The most important factor affecting both the deformation and recovery angle of the stimulus-responsive composite material was the heating temperature.


Sign in / Sign up

Export Citation Format

Share Document