scholarly journals Synthesis and biological evaluation of pyrazole analogues linked with 1,2,3-triazole and 4-thiazolidinone as antimicrobial agents

2022 ◽  
Vol 11 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Nagaraj Adki ◽  
Neelofer Rana ◽  
Ramesh Naik Palthya

A new series of 2-[3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-4-pyrazolyl]-3-aryl-1,3-thiazolan-4-one 5(a-i) have been designed, synthesized and evaluated for their in vitro antibacterial activity against Gram positive bacteria viz. Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538p), Micrococcus luteus (IFC 12708) and Gram negative bacteria viz. Proteus vulgaris (ATCC 3851), Salmonella typhimurium (ATCC 14028), Escherichia coli (ATCC 25922) the antifungal activity against Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), Trichophyton mentagrophytes (IFO 40996). Antibacterial evaluation indicates that compounds containing 4-methoxyphenyl 5c, 4-fluorophenyl 5d and 2,5-difluorophenyl 5h groups on thiazolidinone ring showed significant activity equal to that of standard drug. The antifungal evaluation shows that compound 5c is highly active against A. fumigatus, compound 5d and 5h were also active against C. albicans and A. fumigatus.

Author(s):  
Mejo Joseph ◽  
S. Alaxander

Development of new antimicrobial agents is a better solution to rectify drug resistance problems in society. In this circumstances new functionalized sulphur bearing heterocyclic moiety were designed, synthesized and evaluated for their in vitro antibacterial activity. The present work encompasses the designing novel series of thiophene substituted analogous linked to para amino acetophenone and different aldehydes were successfully synthesized and biological activity was predicted using various computational software’s such as Chemsketch, Molinspiration, and admetSAR. Among the synthesized thiophene substituted chalcones T-IV-I and thiophene T-IV-B displayed significant activity against Streptococcus auresis. Compounds T-IV-J, T-IV-H and T-IV-C bearing sulphur moiety possess better activity against Staphylococcus aureus. Moreover T-IV-C and T-IV-J exhibits good antibacterial activity against E. coli and Pseudomonas aeruginosa. In general, most of the synthesized compounds exhibited remarkable antibacterial activity due to the presence of sulphur atom in the heterocyclic moieties as well as its lipophilic characters. Molecular docking studies indicated that the synthesized compounds are potent inhibitor of microsomal enzyme Glutathione-S-transferases (PDB ID: 1GNW) also find the different interacting residues, bond distanceand nature of bondingbetween the target and the ligand molecules. The results provide important information for the future design of more effective antibacterial agents.


2003 ◽  
Vol 47 (3) ◽  
pp. 923-931 ◽  
Author(s):  
Takaji Fujimura ◽  
Yoshinori Yamano ◽  
Isamu Yoshida ◽  
Jingoro Shimada ◽  
Shogo Kuwahara

ABSTRACT The in vitro antibacterial activity of S-3578, a new parenteral cephalosporin, against clinical isolates was evaluated. The MICs of the drug at which 90% of the isolates were inhibited were 4 μg/ml for methicillin-resistant Staphylococcus aureus (MRSA) and 2 μg/ml for methicillin-resistant Staphylococcus epidermidis, which were fourfold higher than and equal to those of vancomycin, respectively. The anti-MRSA activity of S-3578 was considered to be due to its high affinity for penicillin-binding protein 2a (50% inhibitory concentration, 4.5 μg/ml). In time-kill studies with 10 strains each of MRSA and methicillin-susceptible S. aureus, S-3578 caused more than a 4-log10 decrease of viable cells on the average at twice the MIC after 24 h of exposure, indicating that it had potent bactericidal activity. Furthermore, in population analysis of MRSA strains with heterogeneous or homogeneous resistance to imipenem, no colonies emerged from about 109 cells on agar plates containing twice the MIC of S-3578, suggesting the low frequency of emergence of S-3578-resistant strains from MRSA. S-3578 was also highly active against penicillin-resistant Streptococcus pneumoniae (PRSP), with a MIC90 of 1 μg/ml, which was comparable to that of ceftriaxone. S-3578 also had antibacterial activity against a variety of gram-negative bacteria including Pseudomonas aeruginosa, though its activity was not superior to that of cefepime. In conclusion, S-3578 exhibited a broad antibacterial spectrum and, particularly, had excellent activity against gram-positive bacteria including methicillin-resistant staphylococci and PRSP. Thus, S-3578 was considered to be worthy of further evaluation.


Author(s):  
Zohor Mohammad Mahdi Alzhrani ◽  
Mohammad Mahboob Alam ◽  
Syed Nazreen

Background: The frequent uses of antimicrobial agents to treat infections in diabetic patients make them more drug resistance than non diabetic patients which accounts for higher mortality rate of diabetic patients. Therefore, it is a necessity today to synthesize new drugs with dual mode of action as antidiabetic and antibacterial agents. In the present work, new derivatives containing thiazolidinedione and 1,3,4-oxadiaozle have been synthesized and screened for PPAR-γ and antibacterial activities. Methods: Compound 5-12 have been synthesized from 2-methoxy benzaldehyde and thiazolidinedione and characterized using different spectroscopic techniques such as IR, NMR and mass spectrometry. These compounds were tested for in vitro PPAR-γ transactivation, PPAR-γ gene expression and antibacterial activities. Finally molecular docking was carried out to see the binding interactions of molecules with the target protein. Results: All the compounds follow Lipinski rule suggesting the synthesized derivatives have good drug likeness properties. Compound 11 and 12 exhibited promising PPAR-γ transactivation with 73.69% and 76.50%, respectively as well as showed significant antibacterial activity with comparable MIC of 3.12 μg/disc to standard drug amoxicillin. The docking result was found to be in consistent with the in vitro PPAR-γ transactivation results. Conclusion: Compounds 11 and 12 can be further investigated as lead molecules for the development of new and effective antidiabetic and antibacterial agents.


2021 ◽  
Vol 17 ◽  
Author(s):  
Dnyaneshwar T. Nagre ◽  
Bapu R. Thorat ◽  
Suraj N. Mali ◽  
Mazhar Farooqui ◽  
Brijmohan Agrawal

Background: A series of bis(indolyl)methanes (3a-3o) have been synthesized using a greener and new approach using the reaction of different substituted aldehydes and indole in the presence of an easily available and biodegradable base such as piperidine in acetic acid at room temperature and characterized with UV (Ultraviolet-visible spectroscopy), Gas chromatography-mass spectrometry (GC-MS), Proton nuclear magnetic resonance (H-NMR), and Fourier transform infrared spectroscopy (FTIR). Methods: All 15 newly synthesized compounds (3a-3o) were subjected to in-vitro anti-microbial activity determination and compared with the known standard drug ciprofloxacin (1-2 µg/mL). Our in-silico analysis on the target protein, pdb id: 1d7u suggested that these analogues would be highly active against bacterial targets and thus, would act as good antimicrobial agents. Results: All 15 newly synthesized compounds (3a-3o) displayed potent activity on various experimental microbial strains (1.0-1.4 µg/mL). Compound, 3k was obtained as the best docked compound against common bacterial target enzyme, (pdb id:1d7u). The standard, Ciprofloxacin, retained the docking score of -111.3 Kcal/mol with similar binding amino acid residues (LYS272 (Pi-cation); ALA A:245 (Pi-sigma); TRP A:138 (Pi-Pi); ALA A:112; and MET A:141 (Pi-alkyl)) as of inbound. Conclusion : We believe that our current study would shed more light on the development of potent bis(indolyl)methanes as antimicrobial agents.


Author(s):  
Pooja Pisal ◽  
Meenakshi Deodhar ◽  
Amol Kale ◽  
Ganesh Nigade ◽  
Smita Pawar

Objective: A new series 2-phenyl-3-(substituted benzo[d] thiazol-2-ylamino)-quinazoline-4(3H)-one was prepared by the fusion method by reacting 2-phenyl benzoxazine with 2-hydrazino benzothiazole and it was evaluated for their antimicrobial activity against gram positive, gram negative bacteria and fungi.Methods: Titled compounds were synthesized by fusion reactions. These compounds were evaluated by in vitro antibacterial and antifungal activity using the minimum inhibitory concentration and zone of inhibition methods. The synthesized compounds were characterized with the help of infrared, NMR and mass spectral studies. The benzothiazole moiety and the quinazoline ring have previously shown DNA gyrase inhibition and target related antibacterial activity. Thus, molecular docking studies of synthesized compounds were carried out (PDB: 3G75) to study the possible interaction of compounds with the target. The batch grid docking was performed to determine the probable.Results: These compounds showed significant activity against gram positive and gram negative bacteria as well against the fungi. The compound A5 was found to be active against B. subtilis, P aeruginosa and C. albican at 12.5 µg/ml MIC. The compound A3 was found to be active against all microbial strains selected at 25 and 12.5 µg/ml MIC.Conclusion: Though the relationship between the activities shown by these compounds in, the antimicrobial study is still to be established, the docking studies conducted found to be consistent with antimicrobial results. Thus the results indicate that the designed structure can be a potential lead as an antimicrobial agent.


2015 ◽  
Vol 70 (11) ◽  
pp. 783-795 ◽  
Author(s):  
Essam M. Hussein ◽  
Hossa F. Al-Shareef ◽  
Amany H. Aboellil ◽  
Heba A. Elhady

AbstractA series of novel substituted 6′-(4-chlorophenyl)-3,4′-bipyridine-3′-carbonitriles with incorporated pyrazole and/or triazole moieties have been synthesized using 2-(6′-(4-chlorophenyl)-3′-cyano-3,4′-bipyridin-2′-yloxy)acetohydrazide (3) as starting material. Also, the key intermediate 3 reacted with aromatic aldehydes and tosyl chloride to give the corresponding Schiff bases and tosyl hydrazide derivatives, respectively. The antimicrobial of these newly synthesized compounds was evaluated against Bacillus subtilis as Gram-positive bacteria and Trichoderma viride as a fungus; some of these compounds such as 5, 6, 7, 8, 10, 12, and 14 showed excellent activities as antimicrobial agents. Moreover, the cytotoxic activity of the most active compounds was assessed in vitro against human tumor liver cancer cell line (HEPG2); compounds 8, 10, 13a, and 14 showed potent activities relative to Doxorubicin which was used as a reference standard drug in this study.


2022 ◽  
Vol 8 ◽  
Author(s):  
Entesar A. Hassan ◽  
Ihsan A. Shehadi ◽  
Awatef M. Elmaghraby ◽  
Hadir M. Mostafa ◽  
Salem E. Zayed ◽  
...  

In the present study, a general approach for the synthesis of 1-(1H-indol-3-yl)-3,3-dimercaptoprop-2-en-1-one (1) and 5-(1H-indol-3-yl)-3H-1,2-dithiole-3-thione (2) was performed. They are currently used as efficient precursors for the synthesis of some new compounds bearing five- and/or six-membered heterocyclic moieties, e.g., chromenol (3, 4), 3,4-dihydroquinoline (7, 8) and thiopyran (10, 12)-based indole core. In addition, molecular docking studies were achieved, which showed that all the newly synthesized compounds are interacting with the active site region of the target enzymes, the targets UDP-N-acetylmuramatel-alanine ligase (MurC), and human lanosterol14α-demethylase, through hydrogen bonds and pi-stacked interactions. Among these docked ligand molecules, the compound (9) was found to have the minimum binding energy (−11.5 and −8.5 Kcal/mol) as compared to the standard drug ampicillin (−8.0 and −8.1 Kcal/mol) against the target enzymes UDP-N-acetylmuramatel-alanine ligase (MurC), and Human lanosterol14α-demethylase, respectively. Subsequently, all new synthesized analogues were screened for their antibacterial activities against Gram-positive (Bacillus subtilis), and Gram-negative bacteria (Escherichia coli), as well as for antifungal activities against Candida albicans and Aspergillus flavus. The obtained data suggest that the compounds exhibited good to excellent activity against bacterial and fungi strains. The compound (E)-2-(6-(1H-indole-3-carbonyl)-5-thioxotetrahydrothieno [3,2-b]furan-2(3H)-ylidene)-3-(1H-indol-3-yl)-3-oxopropanedithioic acid (9) showed a high binding affinity as well as an excellent biological activity. Therefore, it could serve as the lead for further optimization and to arrive at potential antimicrobial agent.


2019 ◽  
Vol 44 (1-2) ◽  
pp. 31-41
Author(s):  
Asmaa Kamal Mourad ◽  
Abdelmoneim Abdelsalam Makhlouf ◽  
Ahmed Yousef Soliman ◽  
Samar Ahmed Mohamed

Phthalazine and phthalazinone derivatives are important owing to their significant biological activities and pharmacological properties. Herein, a benzoic acid derivative (2), a benzoxazin-1-one derivative (3), and an oxophthalazin-2(1 H)-yl)acetohydrazide (13) are utilized as precursors to construct a novel series of phthalazinones bearing various valuable functional groups in excellent yields via several simple and promising approaches. Finally, the antimicrobial activity of the newly synthesized phthalazines is screened against different microbial strains; namely, Gram-negative and Gram-positive bacteria utilizing Amoxicillin as a standard drug.


2019 ◽  
Vol 7 (02) ◽  
pp. 01-08
Author(s):  
Harpreet Kaur ◽  
Baljeet Singh

A series of coumarin-benzimidazole derivatives i.e. 4-((1H-Benzo[d]imidazol-2- yl)methoxy)coumarin derivatives (7a-j) was synthesized by reacting appropriate starting materials and evaluated for its in vitro antimicrobial activity. The newly synthesized compounds have been characterized on the basis of elemental analyses, spectroscopic techniques (FT-IR). Antimicrobial studies of these compounds were performed against the both the Gram positive, MRSA (Staphylococcus aureus, Bacillus subtilis) as well as Gram negative (Escherichia coli) bacteria. The activity was investigated by using both Agar well diffusion as well as MIC assay. All the compounds were show significant bactericidal activity against all the pathogenic strains in comparison to Ciprofloxacin, a broad spectrum antibiotic against Gram positive and Gram negative bacteria. Most of the synthesized derivatives appeared as excellent antimicrobial agents as compared to standard drug Ciprofloxacin. Compound 7b was found to be the most active antibacterial agent against Gram positive as well as Gram negative bacteria.


2020 ◽  
Vol 17 ◽  
Author(s):  
Fahad M. Alminderej

: Benzoimidazolphenylethanamine (BPE) was synthesized through the condensation reaction of 1,2-phenyldiamine and L-phenylalanine. The new complexes were prepared from the reaction of 6-amino-N,N-dimethyluracil (ADU), benzoimidazolphenylethanamine and Cadmium (II), Tin (II), Copper (II) and Nickel (II) metal respectively. All new hybrid complexes were fully characterized by spectroscopic data of FTIR, UV-Visible electronic absorption, thermal analysis, X-ray powder diffraction studies and mass spectroscopy. Spectra analyses of the hybrid metal complexes showed the tetrahedral coordination of the ligands to the metal ions via the nitrogen atoms. The in vitro antibacterial activities of the hybrid complexes were assayed against four bacterial isolates namely, Micrococcus luteus, Staphylococcus aureus as gram positive bacteria, Pseudomonas aeruginosa and Escherichia coli as gram negative bacteria using agar well diffusion method. Most of the tested isolates were sensitive to most metal hybrid complexes. The drug likeness and bioactivity properties were calculated using Molinspiration Cheminformatics software.


Sign in / Sign up

Export Citation Format

Share Document