Experimental and Computational Insights into Bis-indolylmethane Derivatives as Potent Antimicrobial Agents Inhibiting 2,2-dialkylglycine Decarboxylase

2021 ◽  
Vol 17 ◽  
Author(s):  
Dnyaneshwar T. Nagre ◽  
Bapu R. Thorat ◽  
Suraj N. Mali ◽  
Mazhar Farooqui ◽  
Brijmohan Agrawal

Background: A series of bis(indolyl)methanes (3a-3o) have been synthesized using a greener and new approach using the reaction of different substituted aldehydes and indole in the presence of an easily available and biodegradable base such as piperidine in acetic acid at room temperature and characterized with UV (Ultraviolet-visible spectroscopy), Gas chromatography-mass spectrometry (GC-MS), Proton nuclear magnetic resonance (H-NMR), and Fourier transform infrared spectroscopy (FTIR). Methods: All 15 newly synthesized compounds (3a-3o) were subjected to in-vitro anti-microbial activity determination and compared with the known standard drug ciprofloxacin (1-2 µg/mL). Our in-silico analysis on the target protein, pdb id: 1d7u suggested that these analogues would be highly active against bacterial targets and thus, would act as good antimicrobial agents. Results: All 15 newly synthesized compounds (3a-3o) displayed potent activity on various experimental microbial strains (1.0-1.4 µg/mL). Compound, 3k was obtained as the best docked compound against common bacterial target enzyme, (pdb id:1d7u). The standard, Ciprofloxacin, retained the docking score of -111.3 Kcal/mol with similar binding amino acid residues (LYS272 (Pi-cation); ALA A:245 (Pi-sigma); TRP A:138 (Pi-Pi); ALA A:112; and MET A:141 (Pi-alkyl)) as of inbound. Conclusion : We believe that our current study would shed more light on the development of potent bis(indolyl)methanes as antimicrobial agents.

2022 ◽  
Vol 11 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Nagaraj Adki ◽  
Neelofer Rana ◽  
Ramesh Naik Palthya

A new series of 2-[3-(5-methyl-1-phenyl-1H-1,2,3-triazol-4-yl)-1-phenyl-1H-4-pyrazolyl]-3-aryl-1,3-thiazolan-4-one 5(a-i) have been designed, synthesized and evaluated for their in vitro antibacterial activity against Gram positive bacteria viz. Bacillus subtilis (ATCC 6633), Staphylococcus aureus (ATCC 6538p), Micrococcus luteus (IFC 12708) and Gram negative bacteria viz. Proteus vulgaris (ATCC 3851), Salmonella typhimurium (ATCC 14028), Escherichia coli (ATCC 25922) the antifungal activity against Candida albicans (ATCC 10231), Aspergillus fumigatus (HIC 6094), Trichophyton rubrum (IFO 9185), Trichophyton mentagrophytes (IFO 40996). Antibacterial evaluation indicates that compounds containing 4-methoxyphenyl 5c, 4-fluorophenyl 5d and 2,5-difluorophenyl 5h groups on thiazolidinone ring showed significant activity equal to that of standard drug. The antifungal evaluation shows that compound 5c is highly active against A. fumigatus, compound 5d and 5h were also active against C. albicans and A. fumigatus.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


Author(s):  
Zohor Mohammad Mahdi Alzhrani ◽  
Mohammad Mahboob Alam ◽  
Syed Nazreen

Background: The frequent uses of antimicrobial agents to treat infections in diabetic patients make them more drug resistance than non diabetic patients which accounts for higher mortality rate of diabetic patients. Therefore, it is a necessity today to synthesize new drugs with dual mode of action as antidiabetic and antibacterial agents. In the present work, new derivatives containing thiazolidinedione and 1,3,4-oxadiaozle have been synthesized and screened for PPAR-γ and antibacterial activities. Methods: Compound 5-12 have been synthesized from 2-methoxy benzaldehyde and thiazolidinedione and characterized using different spectroscopic techniques such as IR, NMR and mass spectrometry. These compounds were tested for in vitro PPAR-γ transactivation, PPAR-γ gene expression and antibacterial activities. Finally molecular docking was carried out to see the binding interactions of molecules with the target protein. Results: All the compounds follow Lipinski rule suggesting the synthesized derivatives have good drug likeness properties. Compound 11 and 12 exhibited promising PPAR-γ transactivation with 73.69% and 76.50%, respectively as well as showed significant antibacterial activity with comparable MIC of 3.12 μg/disc to standard drug amoxicillin. The docking result was found to be in consistent with the in vitro PPAR-γ transactivation results. Conclusion: Compounds 11 and 12 can be further investigated as lead molecules for the development of new and effective antidiabetic and antibacterial agents.


Author(s):  
KOSARAJU LAHARI ◽  
RAJA SUNDARARAJAN

Objective: Isatins have emerged as antimicrobial agents due to their broad spectrum of in vitro and in vivo antimicrobial activities. In addition, thiazolidinone also reported to possess various biological activities particularly antimicrobial activity. Due to the importance, we planned to synthesize compounds with isatin functionality coupled with thiazolidinone as possible antitubercular and antimicrobial agents which could furnish better therapeutic results. Methods: In vitro Mycobacterium tuberculosis method and agar streak dilution test are used to estimate antitubercular and antimicrobial potency of title analogs, respectively. Minimum inhibitory concentration of entire title compounds was determined against all tested microorganism such as M. tuberculosis, four Gram-positive, three Gram-negative bacteria, and two fungi. Results: A series of new thiazolidinone substituted Schiff and Mannich bases of 5-nitroisatins were designed and synthesized by a multistep synthesis from isatin. Structures of synthesized compounds are characterized using Fourier-transform infrared, proton nuclear magnetic resonance, mass spectroscopy, and bases of elemental analysis. Mild to good antitubercular and antimicrobial activity was showed by synthesized 5-nitroisatin analogs. The relationship between the biological activity and the functional group variation of the tested compounds was discussed. Conclusion: 3-(4-(3-(4-Aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethyl amino)methyl)-5-nitroindolin-2-one 6 and 3-(4-(3- (2-aminophenyl)-4-oxothiazolidin-2-yl)phenylimino)-1-((dimethylamino)methyl)-5-nitroindolin-2-one 13 were found to be the most potent compounds of this series which might be extended as a novel class of antimicrobial agents.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hatem A. Abdel-Aziz ◽  
Hazem A. Ghabbour ◽  
Wagdy M. Eldehna ◽  
Maha M. Qabeel ◽  
Hoong-Kun Fun

(Z)-N′-(2-Oxoindolin-3-ylidene)formohydrazide (2) was synthesized by the reaction of (Z)-3-hydrazonoindolin-2-one (1) with formic acid under reflux. The structure of2was characterized by IR, Mass,1H NMR, and X-ray crystal structure determination. Interestingly, compound2appeared in DMSO-d6ascisandtransamide rotomers in 25% and 75%, respectively. The X-ray analysis showed theZgeometrical isomer of2around –C=N– forcisandtransamide rotomers. The crystal of2belongs to monoclinic, space groupP21/c, witha=4.5206(1) Å,b=22.4747(7) Å,c=17.3637(5) Å,β=103.752(1)°,Z=8,V=1713.57(8) Å3,Dc=1.467 Mg m−3,μ=0.11 mm−1,F(000)=784,R=0.047, andwR=0.123for 3798 observed reflections withI>2σ(I). Compound2exhibited a moderate activity in its antimicrobial evaluation againstE. coliandP. aeruginosaand a good activity againstS. aureusclose to that of the standard drug ciprofloxacin. Thein vitroanticancer activity of2was evaluated against two human tumor cell lines, namely, HepG2 hepatocellular carcinoma and MCF-7 breast cancer. HepG2 cancer cell line was more susceptible to compound2than MCF-7.


2021 ◽  
Vol 11 (2) ◽  
pp. 3470-3479

Leaves of Annona muricata are commonly used for treating diabetes. This study was conducted to investigate the molecular mechanisms involved in the antidiabetic properties of leaves of Annona muricata. Leaves of Annona muricata were extracted separately with H2O, hydromethanol (50% methanol), methanol, ethylacetate, and n-butanol. Chemical characterization of the extracts was performed by spectrophotometry and Gas chromatography-Mass Spectrometry (GC-MS) techniques. Biological activity was determined by α-amylase inhibition assays and molecular docking. The hydromethanol extract had a total phenolics concentration of 117.00±0.59 µg GAE/mg extract whereas; flavonoids were most abundant in the n-butanol extract accounting for 29.34±8.87 µg QE/mg extract. The n-butanol extract had the best FRAP value of 41.17±0.57 Vit C eqv mM, which was significantly higher than the value of the vitamin C reference. Estimated IC50 for all the extracts did not differ significantly but was significantly higher than the reference compound quercetin. All extracts inhibited α-amylase in vitro albeit significantly lower than acarbose. The hydromethanol extract had the highest inhibitory activity (53.31 ± 0.33%). Furthermore, chemical profiling of the hydromethanol extract revealed the presence of a variety of bioactive compounds. In silico analysis by molecular docking of the compounds identified by GC-MS on α-amylase revealed that the compounds had robust molecular interactions orchestrated by H-bonding and hydrophobic interactions. From the results, it can be concluded that extracts of Annona muricata possess antioxidant phytochemicals that inhibit α-amylase. Therefore, the results justify the use of the plant for the treatment of diabetes.


Molecules ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 321 ◽  
Author(s):  
Ilinca Margareta Vlad ◽  
Diana Camelia Nuta ◽  
Cornel Chirita ◽  
Miron Teodor Caproiu ◽  
Constantin Draghici ◽  
...  

In a drug-repurposing-driven approach for speeding up the development of novel antimicrobial agents, this paper presents for the first time in the scientific literature the synthesis, physico-chemical characterization, in silico analysis, antimicrobial activity against bacterial and fungal strains in planktonic and biofilm growth state, as well as the in vitro cytotoxicity of some new 6,11-dihydrodibenz[b,e]oxepin-11(6H)one O-(arylcarbamoyl)oximes. The structures of intermediary and final substances (compounds 7a–j) were confirmed by 1H-NMR, 13C-NMR and IR spectra, as well as by elemental analysis. The in silico bioinformatic and cheminformatic studies evidenced an optimal pharmacokinetic profile for the synthesized compounds 7a–j, characterized by an average lipophilic character predicting good cell membrane permeability and intestinal absorption; low maximum tolerated dose for humans; potassium channels encoded by the hERG I and II genes as potential targets and no carcinogenic effects. The obtained compounds exhibited a higher antimicrobial activity against the planktonic Gram-positive Staphylococcus aureus and Bacillus subtilis strains and the Candida albicans fungal strain. The obtained compounds also inhibited the ability of S. aureus, B. subtilis, Escherichia coli and C. albicans strains to colonize the inert substratum, accounting for their possible use as antibiofilm agents. All the active compounds exhibited low or acceptable cytotoxicity levels on the HCT8 cells, ensuring the potential use of these compounds for the development of new antimicrobial drugs with minimal side effects on the human cells and tissues.


2019 ◽  
Vol 18 (25) ◽  
pp. 2186-2196 ◽  
Author(s):  
Sávio Benvindo Ferreira ◽  
Tassiana Barbosa Dantas ◽  
Daniele de Figuerêdo Silva ◽  
Paula Benvindo Ferreira ◽  
Thamara Rodrigues de Melo ◽  
...  

Introduction: This increase in the prevalence of drug-resistant pathogens occurs at a time when the discovery and development of new antimicrobial agents occur slowly. In this context, the objective of this study was to investigate the antifungal activity of isoeugenol, a phenylpropanoid, by in vitro and in silico assays against Penicillium citrinum strains. Material and Method: For in silico analysis, the software PASS online, Molinspiration and Osíris were used. For the determination of Minimum Inhibitory Concentration (MIC) and Minimal Fungicide Concentration (MFC) of isoeugenol and voriconazole were carried out using the broth microdilution technique. PASS online has shown that isoeugenol has the opportunity to present antiseptic, antifungal, antibacterial, antimycobacterial activities. Molinspiration showed that the phytoconstituent has good potential for oral bioavailability. Conclusion: In the analysis with the Osiris program, it was demonstrated that isoeugenol has low irritant and tumorigenic risk. The MIC of isoeugenol varied between 256 and 32 µg/mL, MIC50 of 64 µg/mL and MIC90 was 128 µg/mL. The MFC50, MFC90 and MFC of the isoeugenol for P. citrinum species were 64, 256 and 518 μg/mL, respectively. After analysis, it was verified that the isoeugenol have bactericidal effect against the strains of P. citrinum. After these results, it is important to discover the mechanism of action involved in the antifungal action of the compound, as well as in vitro and in vivo toxicity tests.


2018 ◽  
Vol 16 (2) ◽  
pp. 160-173 ◽  
Author(s):  
Mir Mohammad Masood ◽  
Mohammad Irfan ◽  
Shadab Alam ◽  
Phool Hasan ◽  
Aarfa Queen ◽  
...  

Background: 2,4-disubstituted-1,3-thiazole derivatives (2a–j), (3a–f) and (4a–f) were synthesized, characterized and screened for their potential as antimicrobial agents. In the preliminary screening against a panel of bacterial strains, nine compounds showed moderate to potent antibacterial activity (IC50 = 13.7-90.8 μg/ml). </P><P> Methods: In the antifungal screening, compound (4c) displayed potent antifungal activity (IC50 = 26.5 &#181;g/ml) against Candida tropicalis comparable to the standard drug, fluconazole (IC50 = 10.5 &#181;g/ml). Based on in vitro antimicrobial results, compounds 2f, 4c and 4e were selected for further pharmacological investigations. Hemolytic activity using human red blood cells (hRBCs) and cytotoxicity by MTT assay on human embryonic kidney (HEK-293) cells revealed non-toxic nature of the selected compounds (2f, 4c and 4e). To ascertain their possible mode of action, docking studies with the lead inhibitors (2f, 4c and 4e) were performed using crystal structure coordinates of bacterial methionine aminopeptidases (MetAPs), an enzyme involved in bacterial protein synthesis and maturation. Results: The results of in vitro and in silico studies provide a rationale for selected compounds (2f, 4c and 4e) to be carried forward for further structural modifications and structure-activity relationship (SAR) studies against these bacterial infections. Conclusion: The study suggested binding with one or more key amino acid residues in the active site of Streptococcus pneumoniae MetAP (SpMetAP) and Escherichia coli MetAP (EcMetAP). In silico physicochemical properties using QikProp confirmed their drug likeliness.


2019 ◽  
Vol 15 (5) ◽  
pp. 409-420
Author(s):  
Nidhi Rani ◽  
Randhir Singh

Background: : Imidazoles are considered as potent antimicrobial agents. In view of this 2-mercaptoimidazoles were synthesized and evaluated for antimicrobial study. Methods:: Some new 2-mercaptoimidazoles 4a-r were synthesized using substituted aniline and substituted phenacyl bromides in the presence of anhydrous sodium carbonate or potassium carbonate and potassium thiocyanate under solvent-free conditions catalyzed by eco-friendly ptoluene sulfonic acid. Results: : The structure of compounds was evaluated on the basis of Infrared spectroscopy (IR), 1HNMR (proton nuclear magnetic resonance) and mass spectral studies. These novel compounds were screened for in-vitro antibacterial and antifungal potency against Staphyllococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Further, the study was rationalized by molecular modeling studies. All the compounds were subjected to molecular modeling studies for inhibition of enzyme 14α-demethylase. Conclusions:: The compounds were found to be effective in inhibiting the growth of pathogens. The in-silico results depicted that, all the synthesized compounds have minimum binding energy and good affinity towards the active site and thus can be considered as good inhibitors of 14α- demethylase enzyme.


Sign in / Sign up

Export Citation Format

Share Document