Existence results for nonlinear problems with $\varphi$- Laplacian operators and nonlocal boundary conditions
Keyword(s):
Using Leray-Schauder degree theory we study the existence of at least one solution for the boundary value problem of the type\[\left\{\begin{array}{lll}(\varphi(u' ))' = f(t,u,u') & & \\u'(0)=u(0), \ u'(T)= bu'(0), & & \quad \quad \end{array}\right.\] where $\varphi: \mathbb{R}\rightarrow \mathbb{R}$ is a homeomorphism such that $\varphi(0)=0$, $f:\left[0, T\right]\times \mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R} $ is a continuous function, $T$ a positive real number, and $b$ some non zero real number.
2008 ◽
Vol 06
(01)
◽
pp. 83-98
◽
2018 ◽
Vol 7
(1)
◽
pp. 77-83
Keyword(s):
2014 ◽
Vol 16
(04)
◽
pp. 1350046
◽
Keyword(s):
Keyword(s):
Keyword(s):
1989 ◽
Vol 26
(01)
◽
pp. 103-112
◽
Keyword(s):