scholarly journals A covering property with respect to generalized preopen sets

2019 ◽  
Vol 38 (6) ◽  
pp. 25-32
Author(s):  
Ajoy Mukharjee

In this paper,  we introduce and study the notion of $\mu$-precompact spaces on the observation that  each $\mu$-preopen set of a generalized topological space is contained  in a $\mu$-open set. The $\mu$-precompactness is weaker than $\mu$-compactness but stronger than weakly $\mu$-compactness of  generalized topological spaces.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dipankar Dey ◽  
Dhananjay Mandal ◽  
Manabendra Nath Mukherjee

PurposeThe present article deals with the initiation and study of a uniformity like notion, captioned μ-uniformity, in the context of a generalized topological space.Design/methodology/approachThe existence of uniformity for a completely regular topological space is well-known, and the interrelation of this structure with a proximity is also well-studied. Using this idea, a structure on generalized topological space has been developed, to establish the same type of compatibility in the corresponding frameworks.FindingsIt is proved, among other things, that a μ-uniformity on a non-empty set X always induces a generalized topology on X, which is μ-completely regular too. In the last theorem of the paper, the authors develop a relation between μ-proximity and μ-uniformity by showing that every μ-uniformity generates a μ-proximity, both giving the same generalized topology on the underlying set.Originality/valueIt is an original work influenced by the previous works that have been done on generalized topological spaces. A kind of generalization has been done in this article, that has produced an intermediate structure to the already known generalized topological spaces.


Author(s):  
Hamid Reza Moradi

A nonzero fuzzy open set () of a fuzzy topological space is said to be fuzzy minimal open (resp. fuzzy maximal open) set if any fuzzy open set which is contained (resp. contains) in is either or itself (resp. either or itself). In this note, a new class of sets called fuzzy minimal open sets and fuzzy maximal open sets in fuzzy topological spaces are introduced and studied which are subclasses of open sets. Some basic properties and characterization theorems are also to be investigated.


2017 ◽  
Vol 24 (3) ◽  
pp. 403-407
Author(s):  
Pon Jeyanthi ◽  
Periadurai Nalayini ◽  
Takashi Noiri

AbstractIn this paper, we introduce and study some properties of the sets, namely {\Delta_{\mu}}-sets, {\nabla_{\mu}}-sets and {\Delta_{\mu}^{*}}-closed sets in a generalized topological space.


2019 ◽  
Vol 12 (3) ◽  
pp. 893-905
Author(s):  
Glaisa T. Catalan ◽  
Roberto N. Padua ◽  
Michael Jr. Patula Baldado

Let X be a topological space and I be an ideal in X. A subset A of a topological space X is called a β-open set if A ⊆ cl(int(cl(A))). A subset A of X is called β-open with respect to the ideal I, or βI -open, if there exists an open set U such that (1) U − A ∈ I, and (2) A − cl(int(cl(U))) ∈ I. A space X is said to be a βI -compact space if it is βI -compact as a subset. An ideal topological space (X, τ, I) is said to be a cβI -compact space if it is cβI -compact as a subset. An ideal topological space (X, τ, I) is said to be a countably βI -compact space if X is countably βI -compact as a subset. Two sets A and B in an ideal topological space (X, τ, I) is said to be βI -separated if clβI (A) ∩ B = ∅ = A ∩ clβ(B). A subset A of an ideal topological space (X, τ, I) is said to be βI -connected if it cannot be expressed as a union of two βI -separated sets. An ideal topological space (X, τ, I) is said to be βI -connected if X βI -connected as a subset. In this study, we introduced the notions βI -open set, βI -compact, cβI -compact, βI -hyperconnected, cβI -hyperconnected, βI -connected and βI -separated. Moreover, we investigated the concept β-open set by determining some of its properties relative to the above-mentioned notions.


Author(s):  
Mohammad Irshad KHODABOCUS ◽  
Noor-Ul-Hacq SOOKIA

In a generalized topological space Tg = (Ω, Tg), ordinary interior and ordinary closure operators intg, clg : P (Ω) −→ P (Ω), respectively, are defined in terms of ordinary sets. In order to let these operators be as general and unified a manner as possible, and so to prove as many generalized forms of some of the most important theorems in generalized topological spaces as possible, thereby attaining desirable and interesting results, the present au- thors have defined the notions of generalized interior and generalized closure operators g-Intg, g-Clg : P (Ω) −→ P (Ω), respectively, in terms of a new class of generalized sets which they studied earlier and studied their essen- tial properties and commutativity. The outstanding result to which the study has led to is: g-Intg : P (Ω) −→ P (Ω) is finer (or, larger, stronger) than intg : P (Ω) −→ P (Ω) and g-Clg : P (Ω) −→ P (Ω) is coarser (or, smal ler, weaker) than clg : P (Ω) −→ P (Ω). The elements supporting this fact are reported therein as a source of inspiration for more generalized operations.


Author(s):  
Mohammad Irshad Khodabocus ◽  
Noor-Ul-Hacq Sookia

Several specific types of ordinary and generalized connectedness in a generalized topological space have been defined and investigated for various purposes from time to time in the literature of topological spaces. Our recent research in the field of a new type of generalized connectedness in a generalized topological space is reported herein as a starting point for more generalized types.


Author(s):  
Vijayakumari T Et.al

In this paper pgrw-locally closed set, pgrw-locally closed*-set and pgrw-locally closed**-set are introduced. A subset A of a topological space (X,t) is called pgrw-locally closed (pgrw-lc) if A=GÇF where G is a pgrw-open set and F is a pgrw-closed set in (X,t). A subset A of a topological space (X,t) is a pgrw-lc* set if there exist a pgrw-open set G and a closed set F in X such that A= GÇF. A subset A of a topological space (X,t) is a pgrw-lc**-set if there exists an open set G and a pgrw-closed set F such that A=GÇF. The results regarding pgrw-locally closed sets, pgrw-locally closed* sets, pgrw-locally closed** sets, pgrw-lc-continuous maps and pgrw-lc-irresolute maps and some of the properties of these sets and their relation with other lc-sets are established.


2016 ◽  
Vol 4 (2) ◽  
pp. 151-159
Author(s):  
D Anabalan ◽  
Santhi C

The purpose of this paper is to introduce and study some new class of definitions like µ-point closure and gµ –regular space concerning generalized topological space. We obtain some characterizations and several properties of such definitions. This paper takes some investigations on generalized topological spaces with gµ –closed sets and gµ–closed sets.


2021 ◽  
Vol 18 (24) ◽  
pp. 1443
Author(s):  
T Madhumathi ◽  
F NirmalaIrudayam

Neutrosophy is a flourishing arena which conceptualizes the notion of true, falsity and indeterminancy attributes of an event. In the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. Hence in this paper we focus on introducing the concept of neutrosophic orbit topological space denoted as (X, tNO). Also, some of the important characteristics of neutrosophic orbit open sets are discussed with suitable examples. HIGHLIGHTS The orbit in mathematics has an important role in the study of dynamical systems Neutrosophy is a flourishing arena which conceptualizes the notion of true, falsity and indeterminancy attributes of an event. We combine the above two topics and create the following new concept The collection of all neutrosophic orbit open sets under the mapping . we introduce the necessary conditions on the mapping 𝒇 in order to obtain a fixed orbit of a neutrosophic set (i.e., 𝒇(𝝁) = 𝝁) for any neutrosophic orbit open set 𝝁 under the mapping 𝒇


Filomat ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 1117-1145
Author(s):  
Paolo Lipparini

We introduce a new covering property, defined in terms of order types of sequences of open sets, rather than in terms of cardinalities. The most general form depends on two ordinal parameters. Ordinal compactness turns out to be a much more varied notion than cardinal compactness. We prove many nontrivial results of the form ?every [?,?]-compact topological space is [?',?']-compact?, for ordinals ?,?, ?'and ?' while only trivial results of the above form hold, if we restrict to regular cardinals. Counterexamples are provided showing that many results are optimal. Many spaces satisfy the very same cardinal compactness properties, but have a broad range of distinct behaviors, as far as ordinal compactness is concerned. A much more refined theory is obtained for T1 spaces, in comparison with arbitrary topological spaces. The notion of ordinal compactness becomes partly trivial for spaces of small cardinality.


Sign in / Sign up

Export Citation Format

Share Document