Formulation and Evaluation of Sustained Release Bilayer Matrix Tablet of Glimepiride and Metformin Hydrochloride

Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.

Author(s):  
Rablee Saikia ◽  
Bhanu Pratap Sahu

Objective: The purpose of this study was to develop and evaluate bi-layer tablets for the immediate and controlled release of Metformin Hydrochloride for effective treatment of type 2 Diabetes mellitus.Methods: The immediate release layer was prepared by using super disintegrants like cross carmellose sodium, sodium starch glycolate and sustained release layer was prepared by using hydrophilic polymer like HPMC K 100 and PVP. Various proportions of super disintegrants and polymer were used to select the best formulation composition. Bilayer tablet of metformin was prepared by wet granulation method and was evaluated for physical characteristics like hardness, weight variation, and friability. In vitro release of drug was performed in USP type II dissolution test apparatus using phosphate buffer (pH 6.8) as dissolution media and dissolution was continued for 9 h for the sustained release layer. For immediate release layer, readings were recorded in each 10 min time interval for the first 1h.Results: From the obtained result it was found that all the formulations were within the limit of the standard. The hardness was found to be in the ranges from 5.1 to 5.5 kg/cm2, weight variation was in the range 0.53% to 0.83%, friability of all the formulations was within the range (<1%)and percentage of drug content was more than 97%. The drug release of the tablet was in the range of 85%-91% in 9 h.Conclusion: From the result obtained, it is found that the formulation F6 satisfies all the criteria as sustained release tablet for the effective treatment of type 2Diabetes mellitus.  


Author(s):  
C Suja ◽  
Sismy C

The goal of this study was to formulate and evaluate norfloxacin sustained release tablets. Norfloxacin sustained release tablets were prepared by wet granulation method using two polymers such as HPMC K 100 M (hydrophilic polymer) and guar gum (natural polymer) and with three polymer ratios (0.5, 1.0 and 1.5). The prepared granules were evaluated to preformulation studies such as angle of repose, bulk density, tapped density, bulkiness, compressibility index and Hauser’s ratio. All the parameters shows that the granules having good flow properties. Then the formulated tablets were taken to evaluation studies such as hardness, weight variation, friability, drug content and thickness. All the parameters were within the acceptable limits. IR spectral analysis showed that there was no interaction between the drug and polymers. The in vitro release study was performed in phosphate buffer pH 7.4 at 293 nm. The in vitro release study showed that if the polymer ratio is increased, then the release of the drug is prolonged. HPMC K 100M shows a prolonged release when compared to guar gum.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Amitava Roy ◽  
Kalpana Roy ◽  
Sarbani Roy ◽  
Jyotirmoy Deb ◽  
Amitava Ghosh ◽  
...  

The aim of the present work was designed to develop a model-sustained release matrix tablet formulation for Metformin hydrochloride using wet granulation technique. In the present study the formulation design was employed to statistically optimize different parameters of Metformin hydrochloride tablets at different drug-to-polymer ratios employing polymers Hydroxypropyl methylcellulose of two grades K4M and K100M as two independent variables whereas the dependent variables studied were X60, X120, T50, T90, n, and b values obtained from dissolution kinetics data. The in vitro drug release studies were carried out at simulated intestinal fluids, and the release showed a non-Fickian anomalous transport mechanism. The drug release was found to reveal zero order kinetics. The granules and the tablets were tested for their normal physical, morphological, and analytical parameters and were found to be within the satisfactory levels. There were no significant drug-polymer interactions as revealed by infrared spectra. It has been found out that on an optimum increased Hydroxypropyl methylcellulose K100M concentration and decreased Hydroxypropyl methylcellulose K4M concentration the formulations were elegant in terms of their release profiles and were found to be statistically significant and generable.


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


Author(s):  
OMAR SAEB SALIH ◽  
ZAHRAA M. HAMODDI ◽  
SALAM S. TAHER

Objective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs like candesartan cilexetil. Candesartan cilexetil is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β-cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β-cyclodextrin. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to study compatibility. Results:The angle of repose determination showed good flow for most of the formulas besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement showed accepted values. Friability and hardness of tablets were within the allowed values. Higher tablet swelling was obtained for the formulas containing hydroxy propyl methyl cellulose (HPMC) K100M (F3x and F15z) in which the ratio of the polymer was (1:1) and (1:3) respectively. In vitro release showed that F1x to F13z were studied depends on the type and amount of polymer i.e. (1:1), (1:2) and (1:3) respectively. F1x release after 8h was 95% which contain (1:1) polymer ratio in compare to F3x, which showed 85% after 8h, Which include 1:3 (drug: HPMC K100). Kinetic studies showed a zero-order model. Conclusion: The use of β-cyclodextrin modify the release profile of the drug, and control the sustained release formulas. The lower the time of the release but in a range that a sustained release of the drug was observed in compare with the formulas prepared without β-cyclodextrin.


2020 ◽  
Vol 8 (02) ◽  
pp. 40-45
Author(s):  
Chhitij Thapa ◽  
Roma Chaudhary

INTRODUCTION Domperidone is a unique compound with gastro kinetic and antiemetic effects. It is used in the management of disorder by impaired motility like gastroesophageal reflux (in some instances), gastroparesis, dyspepsia, heartburn, epigastric pain, nausea, vomiting, and colonic inertia. The sustained release system is a widely accepted approach for slow drug release over an extended period to address the challenges of conventional oral delivery, including dosing frequency, drug safety, and efficacy. The study aims to formulate a domperidone sustained release tablet and compare the dissolution rate with the marketed formulations. MATERIAL AND METHODS Sustained release matrix tablets of domperidone were prepared by wet granulation method using different polymers such as HPMC K4M, ethyl cellulose, Gum acacia. Pre-compression studies like angle of repose, bulk density, tapped density, Carr's index, and Hausner’s ratio, and post-compression studies like weight variation, thickness, hardness, friability, drug content, and in-vitro drug release were evaluated.   RESULTS The release profile of domperidone sustained-release tablets was studied spectrophotometrically. The in-vitro dissolution study suggests the minimum %-cumulative drug release with 98.33% in F5. The %-cumulative drug release was maximum in F3 with 99.69%. The in-vitro drug release of all the formulations was non-significant compared to the marketed formulation (p<0.05), exhibiting the sustained-release property by all the formulations. CONCLUSION The pre-compression study concludes the better flow property of the granules of different formulations. The sustained release domperidone tablets were prepared successfully by the wet granulation method. The post-compression parameters of different formulations were within the acceptable range.


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Damineni Saritha ◽  
Vuppula Sruthi

Objective: To develop a novel colon targeted tablet formulation using natural polysaccharides such as kondagogu gum and ghatti gum as carriers and diltiazem hydrochloride as a model drug.Methods: The polymer-drug tablets were prepared by wet granulation technique, coated with two layers viz., inulin as an inner coat followed by shellac as outer coat and evaluated for properties such as average weight, hardness and coat thickness. In vitro release studies of prepared tablets were carried out for 2 h in pH 1.2 HCl buffer, 3 h in pH 7.4 phosphate buffer and 6 h in simulated colonic fluid (SCF) in order to mimic the conditions from mouth to colon.Results: Percentage weight variation, percent friability and content of active ingredient for all the formulations were found to be well within United States Pharmacopoeia (USP) limits. Out of both the polymers, the tablets prepared with ghatti gum showed the maximum hardness of 7.1 kg/cm2. The FTIR spectra of pure diltiazem HCl and the formulation KF3 were found to be identical. From the DSC, it was evident that the melting point peak of diltiazem HCl and formulation KF3 were observed at 217.16 and 218.34 °C respectively. In vitro studies revealed that the tablets coated with shellac (2.5% w/w), prevented the drug release in stomach environment and inulin coated tablets (4% w/w) have limited the drug release in the small intestinal environment. The data obtained from in vitro drug release studies were fit into Peppas model and in all the cases the value of A was found to be more than 2, i.e., drug release by a combination of both diffusion and erosion-controlled drug release.Conclusion: The study revealed that polysaccharides as carriers and inulin and shellac as a coating material can be used effectively for colon targeting of drugs for treating local as well as systemic disorders.


1970 ◽  
Vol 9 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Muhammad Rashedul Islam ◽  
Ishtiaq Ahmed ◽  
Mohiuddin Abdul Quadir ◽  
Md Habibur Rahman

The objective of the present study was to develop once-daily sustained-release matrix tablets of naproxen, one of the most potent non-steroidal anti-inflammatory agents used in the treatment of arthritic pain. The tablets were prepared by direct compression method using hydrophilic matrix materials like Methocel® K4M CR and Methocel® K15M CR. The tablets were subjected to measurement of thickness, diameter, weight variation, drug content, hardness and friability, the results of which were within compendial specification range. In vitro release studies were carried out by the USP basket method and were carried out at pH 7.4 buffer for ten hours. The results of dissolution studies indicated that higher polymer content in the matrix (40%) decreased the release rate of the drug as shown in formulation NMK4MF6 and NMK15MF6 (where lactose content is zero). The most successful formulations of the study, exhibited satisfactory drug release which was very close to the theoretical release profile. All the formulations exhibited diffusion-dominated drug release. Key words: Naproxen; Methocel® K4M CR; Methocel® K15M CR; Sustained release; Matrix tablets DOI: 10.3329/dujps.v9i1.7429 Dhaka Univ. J. Pharm. Sci. 9(1): 47-52 2010 (June)


2020 ◽  
Vol 10 (02) ◽  
pp. 273-283
Author(s):  
Omar Saeb Salih ◽  
Zahraa M. Hamoddi ◽  
Salam S. Taher

Objective: Matrix tablet approach is one of the delivery systems intended for poorly water-soluble drugs, like candesartan cilexetil (CC). CC is a class II drug used for the treatment of hypertension. Methods: Matrix tablets from (F1x to F18z) were prepared in the presence of β‑cyclodextrin. Matrix tablet formulation ensures control release of the drug and higher dissolution by β‑cyclodextrin. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC) were used to study compatibility. Results: The angle of repose determination showed good flow for most of the formulas, besides having good compressibility. Weight variation test for all formulas showed accepted value. Drug content measurement showed accepted values. Friability and hardness of tablets were within the allowed values. Higher tablet swelling was obtained for the formulas containing hydroxypropyl methylcellulose (HPMC) K100M (F3x and F15z), in which the ratio of the polymer was 1:1 and 1:3, respectively. In vitro release showed that F1x to F13z were studied depends on the type and amount of polymer, i.e., 1:1, 1:2, and 1:3, respectively. F1x release after 8 hours was 95%, which contains 1:1 polymer ratio in comparison to F3x, which showed 85% after 8 hours, which includes 1:3 (drug: HPMC K100). Kinetic studies showed a zero-order model. Conclusion: The use of β‑cyclodextrin modifies the release profile of the drug, and some control the more sustained-release formulas. The lower the time of the release but in a range that a sustained release of the drug was observed in comparison with the formulas prepared without β‑cyclodextrin.


2018 ◽  
Vol 21 (2) ◽  
pp. 101-108
Author(s):  
Sreebash Chandra Bhowmik ◽  
Marzia Alam ◽  
Md Saiful Islam Pathan

Metformin hydrochloride is a first line BCS class III oral anti-diabetic drug used for the treatment of type 2 diabetes. The main goal of this study was to formulate, prepare and evaluate natural gum-based immediate release metformin hydrochloride tablet. Seven different formulations of compressed tablets were prepared following wet granulation process using different concentrations (10, 20, 30, 50, 60, 70, 80 and 90 mg) of Aegle marmelos gum as a binder. Aegle marmelos gum is a biodegradable natural gum which is economic, easily available and found useful as tablet binder for both conventional and novel dosage forms. Other excipients used in the formulation were microcrystalline cellulose (MCC), croscarmellose sodium (CCS), maize starch, colloidal silicon dioxide (CSD), sodium starch glycolate (SSG), magnesium stearate etc. In the present study, the compressed tablets were evaluated for weight variation, thickness, hardness, friability, disintegration time and dissolution. In vitro drug release study was carried out in phosphate buffer (pH 6.8) at 37 ± 0.5oC with 50 rpm using USP Dissolution Apparatus 2-Paddle method. The flowability of granules for all the batches was optimum which reflected in the bulk density and angle of repose. It can be concluded from this study that combination of Aegle marmelos as a binder with other excipients can be prospectively used in the preparation of metformin hydrochloride immediate release (IR) tablet.Bangladesh Pharmaceutical Journal 21(2): 101-108, 2018


Sign in / Sign up

Export Citation Format

Share Document