Perspectiva utilizării în spații protejate a Saccharopolyspora Spinosa pentru protecția culturii de castraveți de dăunători

Author(s):  
Andrei Lungu ◽  
Catalysts ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 112 ◽  
Author(s):  
Puspalata Bashyal ◽  
Prakash Parajuli ◽  
Ramesh Pandey ◽  
Jae Sohng

Various flavonoid derivatives including methoxylated flavones display remarkable biological activities. Chrysoeriol is a methoxylated flavone of great scientific interest because of its promising anti-microbial activities against various Gram-negative and Gram-positive bacteria. Sustainable production of such compounds is therefore of pronounced interest to biotechnologists in the pharmaceutical and nutraceutical industries. Here, we used a sugar O-methyltransferase enzyme from a spinosyn biosynthesis gene cluster of Saccharopolyspora spinosa to regioselectively produce chrysoeriol (15% conversion of luteolin; 30 µM) in a microbial host. The biosynthesized chrysoeriol was structurally characterized using high-resolution mass spectrometry and various nuclear magnetic resonance analyses. Moreover, the molecule was investigated against 17 superbugs, including thirteen Gram-positive and four Gram-negative pathogens, for anti-microbial effects. Chrysoeriol exhibited antimicrobial activity against nine pathogens in a disc diffusion assay at the concentration of 40 µg per disc. It has minimum inhibitory concentration (MIC) values of 1.25 µg/mL against a methicillin-resistant Staphylococcus aureus 3640 (MRSA) for which the parent luteolin has an MIC value of sixteen-fold higher concentration (i.e., 20 µg/mL). Similarly, chrysoeriol showed better anti-microbial activity (~1.7-fold lower MIC value) than luteolin against Proteus hauseri, a Gram-negative pathogen. In contrast, a luteolin 4′-O-methylated derivative, diosmetin, did not exhibit any anti-microbial activities against any tested pathogen.


Gene ◽  
1994 ◽  
Vol 146 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Patti Matsushima ◽  
M.Chris Broughton ◽  
Jan R. Turner ◽  
Richard H. Baltz

2011 ◽  
Vol 193 (12) ◽  
pp. 3150-3151 ◽  
Author(s):  
Y. Pan ◽  
X. Yang ◽  
J. Li ◽  
R. Zhang ◽  
Y. Hu ◽  
...  

2009 ◽  
Vol 55 (9) ◽  
pp. 1070-1075 ◽  
Author(s):  
Chao Wang ◽  
XiaoLin Zhang ◽  
Zhi Chen ◽  
Ying Wen ◽  
Yuan Song

Spinosad is a new class of insecticides produced by Saccharopolyspora spinosa . The aim of this study was to construct a starch-utilizing strain that overproduced spinosad by intergeneric fusion between S. spinosa and Streptomyces avermitilis . Protoplast fusion is an important technique for engineering microbial strains, especially for microorganisms with few available molecular genetic tools. Protoplast fusion was conducted with UV-irradiated protoplasts of S. spinosa and S. avermitilis. Among 76 recombinants screened by ESI-MS and HPLC, a starch-utilizing strain F17, identified as S. spinosa, was obtained. The yield of spinosad in F17 was increased by 447.22%, compared with the yield of the wild-type strain. This is the first report of intergeneric protoplast fusion between S. spinosa and S. avermilitis, which shows great potential for industrial applications.


2012 ◽  
Vol 45 (1) ◽  
pp. 73-80 ◽  
Author(s):  
V. Brudea ◽  
I. Rîşca ◽  
C. Enea ◽  
C. Tomescu

Efficacy of Some Biopesticides and Plant Secondary Metabolites Against Fall Webworm Hyphantria Cunea Drury (F. Arctiidae-Lepidoptera) in the Lab Conditions The paper presents the efficacy of the some biopesticides used in the experiments to control fall webworm (Hyphantria cunea), comparatively to some plant secondary metabolites from autochthonous flora. From the first category there were used: spinosad, a secondary metabolite produces by the fermentation from Saccharopolyspora spinosa mushroom and is the active principle of the commercial products of the Naturalyte class; azadyrachtines - a group of limonoids, obtained from the seeds of the Neem tree (Azadirachta indica), and milbecmectin, a product obtained from a metabolite of the Streptomyces hygroscopicus subsp. aureolacrimans bacteria. The results revealed the efficacy of all bio insecticides against fall webworm in 2-7 days period after treatment. Spinosad presented a quick action, comparatively to the other bio pesticides. The secondary metabolites, used into fall webworm control, were extracted from autochthonous plants: the common ladyfern (Drioperis filix mas), the perennial sage (Salvia nemorosa), the wormwood (Artemisia dracunculus, A. vulgaris, A. absinthium) the European birthwort (Aristolochia clematidis), Cow parsnip (Heracleum spondylium), the hedge nettle (Stachis sylvatica), the speedwell (Tanacetum vulgare), the nettle (Urtica dioica), the danewort (Sambucus ebulus) and the yew tree (Taxus baccata) to fall webworm. Plants extracts were obtained from dried ground plants, using 25 g/ 1 litter of cold water, stirred for 24 hours. The extracts in ethylic alcohol were made using the same method, 25 g dried plants in 200 ml alcohol and completed up to 1 litter with water. The experiments were carried out under laboratory conditions, treatments being applied on shoots with leaves affected by fall webworm, placed in growth boxes. Each variant had three replications and each replication contained three infested shoots. The treatments were applied with manual small pumps. Efficacy (E%) was calculated after Săvescu-Iacob formula. The majority of alcoholic plant extracts influenced the decrease of leafs consumption as extracts with water. Extracts of metabolites influenced the eating with repellent effects against larvae, no palatable etc. The future experiments must use more chemical analyses to discriminate the main metabolites, which influence the worm activities.


2015 ◽  
Vol 21 (5) ◽  
pp. 461-467 ◽  
Author(s):  
Chuanbo Zhang ◽  
Chaoyou Xue ◽  
Yueqi Shen ◽  
Wenyu Lu

Sign in / Sign up

Export Citation Format

Share Document