Annual Energy Production Maximization for Tidal Power Plants with Evolutionary Algorithms

2017 ◽  
Vol 10 (3) ◽  
pp. 264-273 ◽  
Author(s):  
Evgenia Kontoleontos ◽  
Simon Weissenberger
Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).


2020 ◽  
Author(s):  
Satya Prasad Paruchuru ◽  
Siva Kalyani Koneti ◽  
Deepthi Jammula ◽  
Jashwitha Nuthalapati

Abstract Capturing the tidal energy is one of the ways of tapping natural and renewable energy which do not involve the cost of working fluid/ fuel. The present work focuses on some of the feasibility aspects of setting up of major tidal power plants along the seacoast. Besides, the present study synergizes on methods of estimating the power-producing capacities in regions along the seacoast. Estimation of power-producing capacities, calendar month-wise, and lunar month-wise gave handy information. Also, the estimation of power-producing capacities of different regions along a location gave clarity on the probable regions of interest for producing power simultaneously. A comparison of the estimates with the details of the literature authenticated the study. A discussion of producing more tidal power in specific locations gave insights into the aspects that may have been ignored in the literature. Geographic restrictions along the local seacoast like identifying the security-sensitive regions rationalized the estimating procedures. The paper includes a discussion of various factors that address the feasibility concerns. The study supposedly helps space exploration too.


2018 ◽  
Vol 8 (8) ◽  
pp. 1221 ◽  
Author(s):  
Abdelkader Rouibah ◽  
Djamel Benazzouz ◽  
Rahmani Kouider ◽  
Awf Al-Kassir ◽  
Justo García-Sanz-Calcedo ◽  
...  

The increase of solar energy production has become a solution to meet the demand of electricity and reduce the greenhouse effect worldwide. This paper aims to determine the performance and viability of direct normal irradiation of three solar tower power plants in Algeria, to be installed in the highlands and the Sahara (Béchar, El Oued, and Djelfa regions). The performance of the plants was obtained through a system advisor model simulator. It used real data gathered from appropriate meteorological files. A relationship between the solar multiple (SM), power generation, and thermal energy storage (TES) hours was observed. The results showed that the optimal heliostat field corresponds to 1.8 SM and 2 TES hours in Béchar, 1.2 SM and 2 TES hours for El Oued, and 1.5 SM and 4 TES hours for Djelfa. This study shows that there is an interesting relationship between the solar multiple, power generation, and storage capacity.


Sign in / Sign up

Export Citation Format

Share Document