scholarly journals Changes in Power Plant NOx Emissions over Northwest Greece Using a Data Assimilation Technique

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 900
Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over Northwestern Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on the year 2015 is used as the a priori emissions in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. Relative to the a priori emissions, the assimilation suggests a strong decrease in concentrations for the station located near the largest power plant, by 80% in 2019 and by 67% in 2018. Concerning the estimated annual a posteriori NOx emissions, it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40–50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (−35% and −38% in 2018, −62% and −72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about −35% and−63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~−30% and −70%, respectively).

Author(s):  
Ioanna Skoulidou ◽  
Maria-Elissavet Koukouli ◽  
Arjo Segers ◽  
Astrid Manders ◽  
Dimitris Balis ◽  
...  

In this work, we investigate the ability of a data assimilation technique and space-borne observations to quantify and monitor changes in nitrogen oxides (NOx) emissions over North-Western Greece for the summers of 2018 and 2019. In this region, four lignite-burning power plants are located. The data assimilation technique, based on the Ensemble Kalman Filter method, is employed to combine space-borne atmospheric observations from the high spatial resolution Sentinel-5 Precursor (S5P) Tropospheric Monitoring Instrument (TROPOMI) and simulations using the LOTOS-EUROS Chemical Transport model. The Copernicus Atmosphere Monitoring Service-Regional European emissions (CAMS-REG, version 4.2) inventory based on year 2015 is used as the a priori in the simulations. Surface measurements of nitrogen dioxide (NO2) from air quality stations operating in the region are compared with the model surface NO2 output using either the a priori (base run) or the a posteriori (assimilated run) NOx emissions. The high biases found between the in situ NO2 measurements and the base run surface NO2 decrease in the assimilated run in most cases. The bias in the station near the largest power plant decreases to 2.0 μg/m3 (2.83 μg/m3) from 10.5 μg/m3 (8.46 μg/m3) in 2019 (2018 respectively). Concerning the estimated annual a posteriori NOx emissions it was found that, for the pixels hosting the two largest power plants, the assimilated run results in emissions decreased by ~40-50% for 2018 compared to 2015, whereas a larger decrease, of ~70% for both power plants, was found for 2019, after assimilating the space-born observations. For the same power plants, the European Pollutant Release and Transfer Register (E-PRTR) reports decreased emissions in 2018 and 2019 compared to 2015 (-35% and -38% in 2018, -62% and -72% in 2019), in good agreement with the estimated emissions. We further compare the a posteriori emissions to the reported energy production of the power plants during the summer of 2018 and 2019. Mean decreases of about -35% and-63% in NOx emissions are estimated for the two larger power plants in summer of 2018 and 2019, respectively, which are supported by similar decreases in the reported energy production of the power plants (~-30% and -70%, respectively).


2012 ◽  
Vol 12 (10) ◽  
pp. 4429-4447 ◽  
Author(s):  
S. W. Wang ◽  
Q. Zhang ◽  
D. G. Streets ◽  
K. B. He ◽  
R. V. Martin ◽  
...  

Abstract. Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82) with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.


2011 ◽  
Vol 11 (12) ◽  
pp. 31523-31583 ◽  
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. A data assimilation system has been developed to estimate global nitrogen oxides (NOx) emissions using OMI tropospheric NO2 columns (DOMINO product) and a global chemical transport model (CTM), CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over Eastern China, the Eastern United States, Southern Africa, and Central-Western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.


2012 ◽  
Vol 12 (5) ◽  
pp. 2263-2288 ◽  
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. A data assimilation system has been developed to estimate global nitrogen oxides (NOx) emissions using OMI tropospheric NO2 columns (DOMINO product) and a global chemical transport model (CTM), the Chemical Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER). The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over eastern China, the eastern United States, southern Africa, and central-western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.


2012 ◽  
Vol 12 (1) ◽  
pp. 45-91 ◽  
Author(s):  
S. W. Wang ◽  
Q. Zhang ◽  
D. G. Streets ◽  
K. B. He ◽  
R. V. Martin ◽  
...  

Abstract. Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82) with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.


Author(s):  
Dennis Toebben ◽  
Tobias Burgard ◽  
Sebastian Berg ◽  
Manfred Wirsum ◽  
Liu Pei ◽  
...  

Abstract Combined cycle power plants (CCPP) have many advantages compared to other fossil power plants: high efficiency, flexible operation, compact design, high potential for combined heat and power (CHP) applications and fewer emissions. However, fuel costs are relatively high compared to coal. Nevertheless, major qualities such as high operation flexibility and low emissions distinctly increase in relevance in the future, due to rising power generation from renewable energy sources. An accelerated start-up procedure of CCPPs increases the flexibility and reduces the NOx-emissions, which are relatively high in gas turbine low load operation. Such low load operation is required during a cold start of a CCPP in order to heat up the steam turbine. Thus, a warm-keeping of the thermal-limiting steam turbine results in an accelerated start-up times as well as reduced NOx-emissions and lifetime consumption. This paper presents a theoretical analysis of the potential of steam turbine warm-keeping by means of hot air for a typical CCPP, located in China. In this method, the hot air passes through the steam turbine while the power plant is shut off which enables hot start conditions at any time. In order to investigate an improved start-up procedure, a physical based simplified model of the water-steam cycle is developed on the basis of an operation data set. This model is used to simulate an improved power plant start-up, in which the steam turbine remains hot after at least 120 hours outage. The results show a start-up time reduction of approximately two-thirds in comparison to a conventional cold start. Furthermore, the potential of steam turbine warm-keeping is discussed with regards to the power output, NOx-emissions, start-up costs and lifetime consumption.


2015 ◽  
Vol 8 (3) ◽  
pp. 3283-3319 ◽  
Author(s):  
R. J. van der A ◽  
M. A. F. Allaart ◽  
H. J. Eskes

Abstract. The ozone multi-sensor reanalysis (MSR) is a multi-decadal ozone column data record constructed using all available ozone column satellite datasets, surface Brewer and Dobson observations and a data assimilation technique with detailed error modelling. The result is a high-resolution time series of 6 hourly global ozone column fields and forecast error fields that may be used for ozone trend analyses as well as detailed case studies. The ozone MSR is produced in two steps. First, the latest reprocessed versions of all available ozone column satellite datasets are collected, and are corrected for biases as function of solar zenith angle, viewing angle, time (trend), and stratospheric temperature using Brewer/Dobson ground measurements from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC; http://www.woudc.org/). Subsequently the debiased satellite observations are assimilated within the ozone chemistry and data assimilation model TMDAM driven by meteorological analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF). The MSR2 (MSR version 2) reanalysis upgrade described in this paper consists of an ozone record for the 43 year period 1970–2012. The chemistry-transport model and data assimilation system have been adapted to improve the resolution, error modelling and processing speed. BUV satellite observations have been included for the period 1970–1977. The total record is extended with 13 years compared to the first version of the ozone multi sensor reanalysis, the MSR1. The latest total ozone retrievals of 15 satellite instruments are used: BUV-Nimbus4, TOMS-Nimbus7, TOMS-EP, SBUV-7, -9, -11, -14, -16, -17, -18, -19, GOME, SCIAMACHY, OMI and GOME-2. The resolution of the model runs, assimilation and output is increased from 2° x 3° to 1° x 1°. The analysis is driven by three-hourly meteorology from the ERA-interim reanalysis of ECMWF starting from 1979, and ERA-40 before that date. The chemistry parameterization has been updated. The performance of the MSR2 analysis is studied with the help of observation-minus-forecast (OmF) departures from the data assimilation, by comparisons with the individual station observations and with ozone sondes. The OmF statistics show that the mean bias of the MSR2 analyses is less than 1% with respect to debiased satellite observations after 1979.


2012 ◽  
Vol 12 (23) ◽  
pp. 11519-11531 ◽  
Author(s):  
C. R. Lonsdale ◽  
R. G. Stevens ◽  
C. A. Brock ◽  
P. A. Makar ◽  
E. M. Knipping ◽  
...  

Abstract. Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM) large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX) during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx) produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to the cleaner test day in 2000). Finally, we calculate particle-formation statistics of 330 coal-fired power plants in the US in 1997 and 2010, and the model results show a median decrease of 19% in particle formation rates from 1997 to 2010 (whereas the W. A. Parish case study showed an increase). Thus, the US power plants, on average, show a different result than was found for the W. A. Parish plant specifically, and it shows that the strong NOx controls (90% reduction) implemented at the W. A. Parish plant (with relatively weak SO2 emissions reductions, 30%) are not representative of most power plants in the US during the past 15 yr. These results suggest that there may be important climate implications of power-plant controls due to changes in plume chemistry and microphysics, but the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 84
Author(s):  
Margarida Casau ◽  
Diana C. M. Cancela ◽  
João C. O. Matias ◽  
Marta Ferreira Dias ◽  
Leonel J. R. Nunes

Energy consumption is associated with economic growth, but it comes with a toll regarding the environment. Renewable energies can be considered substitutes for fossil fuels and may contribute to reducing the environmental degradation that the world is presently facing. With this research, we aimed to offer a broader view of the state-of-the-art in this field, particularly regarding coal and biomass. The main objective is to present a viable and sustainable solution for the coal power plants still in operation, using as a hypothetical example the Pego Power Plant, the last operating coal fueled power plant in Portugal. After the characterization of land use and energy production in Portugal, and more particularly in the Médio Tejo region, where the power plant is located, the availability of biomass was assessed and it was concluded that the volume of biomass needed to keep the Pego power plant working exclusively with biomass is much lower than the yearly growth volume of biomass in the region, which means that this transition would be viable in a sustainable way. This path is aligned with policies to fight climate change, since the use of biomass for energy is characterized by low levels of GHGs emissions when compared to coal. The risk of rural fires would be reduced, and the economic and social impact for this region would be positive.


Urban Studies ◽  
2021 ◽  
pp. 004209802110414
Author(s):  
Sergio Montero ◽  
Gianpaolo Baiocchi

Urban studies scholars have engaged in a lively debate on how to reformat comparative methods in the face of critical scrutiny of the discipline’s purported universalism. We share the enthusiasm for a reformatted urban comparativism and, in this paper, we turn to the thorny and more pragmatic question of how to actually carry it out. While traditional comparisons in urban studies have sought to find variation among similar cases by selecting a priori, in this article we propose to compare the findings of different researchers through a posteriori, that is, after the research has been done. We also argue that urban researchers need to focus on urban processes rather than cities; on repeated instances rather than on controlling for difference; and on mid-level abstraction rather than on grand theory or descriptive empirical cases. We put this strategy to work by comparing empirical research previously carried out by the authors on how two Latin American cities became international urban ‘best practices’: Bogotá as a sustainable transport model and Porto Alegre as a model of local participatory budgeting. The comparison highlights the tension between the simplified policy narratives that were mobilised to circulate Bogotá and Porto Alegre as international ‘best practices’ and the broader multi-scalar institutional reforms that these ‘best practice’ narratives have left behind in their global circulations. In doing so, we show the potential of a posteriori comparisons to analyse contemporary global urban dynamics and provide some explicit methodological tactics on how to do comparisons in a more systematic way.


Sign in / Sign up

Export Citation Format

Share Document