Optimal Design for Stacking Line of Rotor Blade in a Single-Stage Transonic Axial Compressor

2006 ◽  
Vol 9 (3) ◽  
pp. 7-13 ◽  
Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


2012 ◽  
Vol 15 (6) ◽  
pp. 77-84 ◽  
Author(s):  
Tae Choon Park ◽  
Young-Seok Kang ◽  
Oh-Sik Hwang ◽  
Ji-Han Song ◽  
Byeung Jun Lim

2012 ◽  
Vol 15 (6) ◽  
pp. 85-91
Author(s):  
Ji-Han Song ◽  
Oh-Sik Hwang ◽  
Tae Choon Park ◽  
Byung-Jun Lim ◽  
Soo-Seok Yang ◽  
...  

Author(s):  
Gregory Bloch ◽  
James Loellbach ◽  
Chunill Hah

A numerical investigation of unsteady blade row interaction in a transonic axial compressor was performed. The compressor consists of an upstream wake generator (WG) blade row followed by a rotor blade row. Blade row interaction consists of two main effects: the downstream influence on the rotor flowfield of wakes and unsteady vortices shed from the wake generator, and the upstream influence on the wake generator of the rotor bow shock waves. An unsteady, two-dimensional, Navier-Stokes simulation was performed at the 75% span location of the compressor. Results from the numerical simulation are compared to previously reported numerical results and to experimental measurements from a similar case.


Author(s):  
Cong-Truong Dinh ◽  
Tien-Dung Vuong ◽  
Xuan-Truong Le ◽  
The-Mich Nguyen ◽  
Quang-Hai Nguyen

Sign in / Sign up

Export Citation Format

Share Document