Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor

2012 ◽  
Vol 15 (6) ◽  
pp. 85-91
Author(s):  
Ji-Han Song ◽  
Oh-Sik Hwang ◽  
Tae Choon Park ◽  
Byung-Jun Lim ◽  
Soo-Seok Yang ◽  
...  
2011 ◽  
Vol 308-310 ◽  
pp. 1519-1522
Author(s):  
Fang Xie ◽  
Chang Jiang Liu ◽  
You Jun Wang

Numerical method using HI and HOH meshing combined B - L turbulent model and S - A turbulent model separately based on the Rotor 37 compressor Rotor was applied to the steady flow. results on pressure characteristic curve, stall point forecast etc were compared with related experimental data. This paper discussed calculation precision influenced by the turbulence model and numerical computation grid. This numerical investigation was basis for subsequent compressor internal flow field study.


Author(s):  
Chaoqun Nie ◽  
Jingyi Chen ◽  
Xingmin Gui ◽  
Qing Yu ◽  
Tongqing Wang

The unsteady transition characteristics of rotating stall have been studied experimentally in a single-stage transonic axial compressor. Three tested conditions in the near design and below design speed range, at tip relative Mach numbers from 1.26 to 1.0, were performed. The characteristics of rotating stall were studied by its dynamic behavior on the scale of compressor circumference and also by the flow field details in the blade passage. The dynamic behavior was analyzed by the technique of successive frequency spectrum and the flow field details were studied through internal transient pressure patterns in the blade passage plotted by the dynamic pressure data measured on the compressor shroud. It has been shown that intermittent pre-stall perturbations are evident for all the tested speeds and distinct by the different time and length scale of their existence. These are also interpreted by the difference of pressure loading and shock structure visualized in the pressure plots in the blade passage during stall inception. The pre-stall perturbations, with rather scattered frequency spectra, grow into fully developed stall abruptly. Nevertheless, the frequency spectrum of rotating stall falls into constant fraction of the frequency of compressor rotation for all the tested conditions. The increasing trend of the amplitude of pressure oscillation of rotating stall while gathering at its frequency spectrum could be detected in the stage of stall inception. Based on these two observations, there is a possibility of warning the stall precursors even for the high speed transonic compressor like the one tested in this paper.


2020 ◽  
Vol 2020 (0) ◽  
pp. J05105
Author(s):  
Seishiro SAITO ◽  
Masato FURUKAWA ◽  
Kazutoyo YAMADA ◽  
Akinori MATSUOKA ◽  
Naoyuki NIWA

Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


2020 ◽  
Vol 12 (3) ◽  
pp. 168781401989721 ◽  
Author(s):  
Haiou Sun ◽  
Meng Wang ◽  
Zhongyi Wang ◽  
Song Wang ◽  
Franco Magagnato

To improve the understanding of unsteady flow in modern advanced axial compressor, unsteady simulations on full-annulus multi-stage axial compressor are carried out with the harmonic balance method. Since the internal flow in turbomachinery is naturally periodic, the harmonic balance method can be used to reduce the computational cost. In order to verify the accuracy of the harmonic balance method, the numerical results are first compared with the experimental results. The results show that the internal flow field and the operating characteristics of the multi-stage axial compressor obtained by the harmonic balance method coincide with the experimental results with the relative error in the range of 3%. Through the analysis of the internal flow field of the axial compressor, it can be found that the airflow in the clearance of adjacent blade rows gradually changes from axisymmetric to non-axisymmetric and then returns to almost completely axisymmetric distribution before the downstream blade inlet, with only a slight non-axisymmetric distribution, which can be ignored. Moreover, the slight non-axisymmetric distribution will continue to accumulate with the development of the flow and, finally, form a distinct circumferential non-uniform flow field in latter stages, which may be the reason why the traditional single-passage numerical method will cause certain errors in multi-stage axial compressor simulations.


Author(s):  
Seishiro Saito ◽  
Kazutoyo Yamada ◽  
Masato Furukawa ◽  
Keisuke Watanabe ◽  
Akinori Matsuoka ◽  
...  

This paper describes unsteady flow phenomena of a two-stage transonic axial compressor, especially the flow field in the first stator. The stator blade with highly loaded is likely to cause a flow separation on the hub, so-called hub-corner separation. The flow mechanism of the hub-corner separation in the first stator is investigated in detail using a large-scale detached eddy simulation (DES) conducted for its full-annulus and full-stage with approximately 4.5 hundred million computational cells. The detailed analysis of complicated flow fields in the compressor is supported by data mining techniques. The data mining techniques applied in the present study include vortex identification based on the critical point theory and topological analysis of the limiting streamline pattern. The simulation results show that the flow field in the hub-corner separation is dominated by a tornado-type separation vortex. In the time averaged flow field, the hub-corner separation vortex rolls up from the hub wall, which is generated by the interaction between the mainstream flow, the leakage flow from the front partial clearance and the secondary flow across the blade passage toward the stator blade suction side. The hub-corner separation vortex suffers a vortex breakdown near the mid chord, where the high loss region due to the hub-corner separation expands drastically. In the rear part of the stator passage, a high loss region is migrated radially outward by the induced velocity of the hub-corner separation vortex. The flow field in the stator is influenced by the upstream and downstream rotors, which makes it difficult to understand the unsteady effects. The unsteady flow fields are analyzed by applying the phase-locked ensemble averaging technique. It is found from the phase-locked flow fields that the wake interaction from the upstream rotor has more influence on the stator flow field than the shock wave interaction from the downstream rotor. In the unsteady flow field, a focal-type separation also emerges on the blade suction surface, but it is periodically swept away by the wake passing of the upstream rotor. The separation vortex on the hub wall connects with the one on the blade suction surface, forming an arch-like vortex.


2020 ◽  
Vol 156 ◽  
pp. 158-172
Author(s):  
David Štefan ◽  
Mosè Rossi ◽  
Martin Hudec ◽  
Pavel Rudolf ◽  
Alessandra Nigro ◽  
...  

2013 ◽  
Vol 27 (11) ◽  
pp. 3309-3318 ◽  
Author(s):  
Saeil Lee ◽  
Dong-Ho Lee ◽  
Kyu-Hong Kim ◽  
Tae Choon Park ◽  
Byeung Jun Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document