scholarly journals Inhibitory Effects of Cortex Dictamni Aqueous Extract on Dipeptidyl Peptidase I and Chymase Activities and the Screening of Active Ingredients in Cortex Dictamni Based on Molecular Docking Technique

2020 ◽  
Vol 12 (1) ◽  
pp. 19
Author(s):  
Qi Wang ◽  
Tao Wei ◽  
Xiaoying Zhou

Dipeptidyl peptidase I (DPPI) and chymase, the granulo-proteases produced and released by mast cells, are important targets of anti-inflammatory drug research and development. Cortex Dictamni is a definite nature drug with anti-inflammatory activity, but the mechanism is unclear and effects of Cortex Dictamni on DPPI and chymase are unknown. This study focuses on effects of Cortex Dictamni aqueous extract (CDAE) on DPPI and chymase activities using cell model, bio-molecular interactions and the Molecular docking study by Discovery Studio (DS) analysis. The results showed that CDAE could significantly inhibit DPPI and chymase activities in vitro and in living rat spleen lymphocytes. Molecular docking simulation demonstrated that Troxerutin, the one of the active compounds of Cortex Dictamni, formed a hydrogen bond with amino acid ILE429 and a strong hydrophobic interaction with TYR64 CYS234 PRO279 ALA382 of DPPI. These interactions allow Troxerutin to form a stable complex with the DPPI, implicating that Troxerutin might be a potential natural inhibitor of DPPI. Dictamnoside M, another active compound of Cortex Dictamni formed hydrogen bonds and hydrophobic interactions within the binding pocket of chymase domain and form a stable complex with the chymase. Dictamnoside M maybe a potential natural inhibitor of chymase. This study suggested a new nature inhibitor Cortex Dictamni and its active components with the anti-inflammatory effects.

2019 ◽  
Vol 14 (1) ◽  
pp. 85-90
Author(s):  
Sagarika Biswas

Background: Rheumatoid Arthritis (RA) is an autoimmune disorder of symmetric synovial joints which is characterized by the chronic inflammation with 0.5-1% prevalence in developed countries. Presence of persistent inflammation is attributed to the major contribution of key inflammatory cytokine and tumour necrosis factor- alpha (TNF- &#945;). Recent drug designing studies are developing TNF-&#945; blockers to provide relief from the symptoms of the disease such as pain and inflammation. Available blockers are showing certain limitations such as it may enhance the rate of tuberculosis (TB) occurrence, lymphoma risk, cost issues and certain infections are major concern. Discussed limitations implicated a need of development of some alternative drugs which exhibit fewer side effects with low cost. Therefore, we have identified anti-inflammatory compounds in an underutilized fruit of Baccaurea sapida (B.sapida) in our previous studies. Among them quercetin have been identified as the most potent lead compound for drug designing studies of RA. </P><P> Methods: In the present article, characterization of quercetin has been carried out to check its drug likeliness and molecular docking study has been carried out between TNF- &#945; and quercetin by using AutoDock 4.2.1 software. Further, inhibitory effect of B. sapida fruit extract on RA plasma has been analysed through immunological assay ELISA. </P><P> Results: Our in-silico analysis indicated that quercetin showed non carcinogenic reaction in animal model and it may also cross the membrane barrier easily. We have studied the ten different binding poses and best binding pose of TNF-&#945; and quercetin showed -6.3 kcal/mol minimum binding energy and 23.94 &#181;M inhibitory constant. In addition to this, ELISA indicated 2.2 down regulated expression of TNF-&#945; in RA compared to control. </P><P> Conclusion: This study may further be utilized for the drug designing studies to reduce TNF-&#945; mediated inflammation in near future. This attempt may also enhance the utilization of this plant worldwide.


2016 ◽  
Vol 24 (9) ◽  
pp. 2032-2042 ◽  
Author(s):  
Maged A. Abdel-Sayed ◽  
Said M. Bayomi ◽  
Magda A. El-Sherbeny ◽  
Naglaa I. Abdel-Aziz ◽  
Kamal Eldin H. ElTahir ◽  
...  

2018 ◽  
Vol 55 (12) ◽  
pp. 2901-2910 ◽  
Author(s):  
Dhansay Dewangan ◽  
Kartik T. Nakhate ◽  
Vinay Sagar Verma ◽  
Kushagra Nagori ◽  
Hemant Badwaik ◽  
...  

Author(s):  
Riska Prasetiawati ◽  
Meilia Suherman ◽  
Benny Permana ◽  
Rahmawati Rahmawati

It is presumed that antiproliferative activity of anthocyanidin has interaction with Epidermal Growth Factor Receptor (EGFR) which has effect on lung cancer cell growth. This study aimed to observe the interaction between anthocyanidin and EGFR and to find out prediction, absorption, distribution activities as well as anthocyanidin toxicity compared to Gefitinib, an EGFR inhibitor. All test compounds were optimized with Autodock Tools®, then molecular docking simulations and predictions of absorption, distribution and toxicity were carried out. Malvidin was stated to meet the Lipinski's Rule of Five, indicating good bioavailability. Result of molecular docking simulation showed that malvidin had better affinity against EGFR than Gefitinib. Molecular docking visualization result showed that malvidin had interaction with amino acid residue such as Met793, Gln791, Leu718, Thr854, Asp855 and Lys745. Absorption and distribution predictions included percentage scores of Human Intestinal Absorption (HIA), human colon adenocarcinoma (Caco-2), and Plasma Protein Binding. Toxicity test revealed that malvidin was mutagenic compound but not carcinogenic one. The findings indicated that malvidin was potential to be an anti lung cancer candidate through EGFR inhibition.Keywords: Antiproliferative, Anthocyanidin, Epidermal Growth Factor Receptor, Molecular Docking


2021 ◽  
Author(s):  
Heerak Chugh ◽  
Pramod Kumar ◽  
Neeraj Kumar ◽  
Rajesh K. Gaur ◽  
Gagan Dhawan ◽  
...  

Noscapine binds human hemoglobin spontaneously forming a stable complex that affects noscapine's ADMET profile, bioavailability and toxicity.


Sign in / Sign up

Export Citation Format

Share Document