GRP137 promotes cell proliferation and metastasis through regulation of the PI3K/AKT pathway in human ovarian cancer

2018 ◽  
Vol 104 (5) ◽  
pp. 330-337 ◽  
Author(s):  
Li-qian Zhang ◽  
Su-qing Yang ◽  
Xiang-dong Qu ◽  
Xian-jun Chen ◽  
Hong-sheng Lu ◽  
...  

Purpose: Ovarian cancer is one of the leading causes of death for women worldwide. The present study aims to investigate the role of G protein-coupled receptor 137 (GPR137) in the biological activities of ovarian cancer cells. Methods: (QUERY: Please supply Methods for Abstract) Results: G protein-coupled receptor 137 was highly expressed in clinical ovarian cancer tissues and exhibited the highest protein levels in SKOV3 cells and OVCAR3 cells. Knockdown of GPR137 caused significant decreases in cell proliferative rates and colony formation abilities in SKOV3 cells and OVCAR3 cells and also inhibited the in vivo tumorigenesis in a xenograft model. It was observed that knockdown of GPR137 inhibited cell motility by up to 40% in SKOV3 cells and approximately 65% in OVCAR3 cells in wound-healing assay. Cell migration abilities were consistently inhibited by 68.2% in SKOV3 cells and 59.3% in OVCAR3 cells, whereas cell invasion abilities were inhibited by 64.0% and 74.2% in SKOV3 and OVCAR3 cells, respectively, after knockdown of GPR137. When GPR137 was depleted, epithelial markers were increased, while mesenchymal markers decreased. Conclusions: Our data suggest that GPR137 plays pro-oncogenic roles in ovarian cancer via regulation of the PI3K/AKT pathway. These observations might pave new insights into therapeutic strategies against human ovarian cancer.

2019 ◽  
Vol 18 ◽  
pp. 153303381987477
Author(s):  
Li Q. Zhang ◽  
Hua Q. Yang ◽  
Su Q. Yang ◽  
Ying Wang ◽  
Xian J. Chen ◽  
...  

Introduction: The mechanism of tumorigenesis and metastasis of ovarian cancer has not yet been elucidated. This study aimed to investigate the role and molecular mechanism of cytosolic nonspecific dipeptidase 2 in tumorigenesis and metastasis. Methods: Cytosolic nonspecific dipeptidase 2 expression in human ovarian cancer tissues and cell lines was assessed with methyl thiazolyl tetrazolium (MTT), clone formation, and transwell assays performed to evaluate the ability of ovarian cancer cells to proliferate and migrate. Nude mice tumor formation experiments were also performed by subcutaneously injecting cells with stable cytosolic nonspecific dipeptidase 2 knockdown and control SKOV3 cells into BALB/c female nude mice to detect changes in PI3K/AKT pathway-related proteins by Western blotting. Results: Cytosolic nonspecific dipeptidase 2 was highly expressed in human ovarian cancer tissues, with its expression associated with pathological data, including ovarian cancer metastasis. A cytosolic nonspecific dipeptidase 2 stable knockdown or ectopic expression ovarian cancer cell model was established and demonstrated that cytosolic nonspecific dipeptidase 2 could promote the proliferation of ovarian cancer cells. Transwell cell migration and invasion assays confirmed that cytosolic nonspecific dipeptidase 2 enhanced cell metastasis in ovarian cancer. Furthermore, in vivo xenograft experiments demonstrated that cytosolic nonspecific dipeptidase 2 can promote the development and progression of ovarian cancer, increasing the expression of phosphorylated PI3K and AKT. Conclusions: Cytosolic nonspecific dipeptidase 2 promotes the occurrence and development of ovarian cancer through the PI3K/AKT signaling pathway.


2017 ◽  
Vol 37 (4) ◽  
pp. 401-408 ◽  
Author(s):  
Jun Negishi ◽  
Yuka Omori ◽  
Mami Shindo ◽  
Hayate Takanashi ◽  
Shiori Musha ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (5) ◽  
pp. 261 ◽  
Author(s):  
Hyocheol Bae ◽  
Jin-Young Lee ◽  
Gwonhwa Song ◽  
Whasun Lim

Ovarian cancer is difficult to diagnose early and has high rates of relapse and mortality. Therefore, the treatment of ovarian cancer needs to be improved. Recently, several studies have been conducted in an attempt to develop anticancer drugs from naturally derived ingredients. Compared to traditional chemotherapy, natural compounds can overcome drug resistance with lower side effects. Fucosterol, a phytosterol present in brown algae, reportedly possesses many bioactive effects, including anticancer properties. However, the anticancer effects of fucosterol in ovarian cancer remain unexplored. Therefore, we investigated the effects of fucosterol on progression in human ovarian cancer cells. Fucosterol inhibited cell proliferation and cell-cycle progression in ovarian cancer cells. Additionally, fucosterol regulated the proliferation-related signaling pathways, the production of reactive oxygen species, mitochondrial function, endoplasmic reticulum stress, angiogenesis, and calcium homeostasis. Moreover, it decreased tumor formation in a zebrafish xenograft model. These results indicate that fucosterol could be used as a potential therapeutic agent in ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document