scholarly journals Effect of respiratory effort on target minute ventilation during Adaptive Support Ventilation.

2021 ◽  
Vol 2 (2) ◽  
pp. 53-58
Author(s):  
Marissa Su ◽  
ehab daoud

Background: Adaptive support ventilation (ASV) is an intelligent mode of mechanical ventilation protocol which uses a closed-loop control between breaths. The algorithm states that for a given level of alveolar ventilation, there is a particular respiratory rate and tidal volume which achieve a lower work of breathing. The mode allows the clinician to set a desired minute ventilation percentage (MV%) while the ventilator automatically selects the target ventilatory pattern base on these inputs and feedback from the ventilator monitoring system. The goal is to minimize the work of breathing and reduce complications by allowing the ventilator to adjust the breath delivery taking into account the patient’s respiratory mechanics (Resistance, and Compliance). In this study we examine the effect of patients’ respiratory effort on target tidal volume (VT) and Minute Ventilation (V̇e) during ASV using breathing simulator. Methods: A bench study was performed by using the ASL 5000 breathing simulator to compare the target ventilator to actual VT and V̇e value in simulated patients with various level of respiratory effort during ASV on the Hamilton G5 ventilator. The clinical scenario involves simulated adult male with IBW 70kg and normal lung mechanics: respiratory compliance of 70 mL/cm H2O, and airway resistance of 9 cm H2O/L/s. Simulated patients were subjected to five different level of muscle pressure (Pmus): 0 (Passive), -5, -10, -15, -25 (Active) cm H2O at a set respiratory rate of 10 (below targeted VT) set at three different levels of minute ventilation goals: 100%, 200%, and 300%, with a PEEP of 5 cm H2O. Fifty breaths were analyzed in every experiment. Means and standard deviations (SD) of variables were calculated. One way analysis of variants was done to compare the values. Pearson correlation coefficient test was used to calculate the correlation between the respiratory effort and the VT, V̇e, and peak inspiratory pressure (PIP). Results: The targeted VT and V̇e were not significant in the passive patient when no effort was present, however were significantly higher in the active states at all levels of Pmus on the 100%, 200% and the 300 MV%. The VT and V̇e increase correlated with the muscle effort in the 100 and 200 MV% but did not in the 300%. Conclusions: Higher inspiratory efforts resulted in significantly higher VT and V̇e than targeted ones. Estimating patients’ effort is important during setting ASV. Keywords: Mechanical ventilation, ASV, InteliVent, Pmus, tidal volume, percent minute ventilation

2021 ◽  
Vol 2 (2) ◽  
pp. 48-52
Author(s):  
Ronald Sanderson ◽  
Denise Whitley ◽  
Christopher Batacan

Background Automation of mechanical ventilation allows for reduction of variation in patient management and has the potential to provide increased patient safety by strict adherence to computer driven ventilator protocols. Methods: A retrospective, observational study compared a group of 196 of general ICU patients managed exclusively on automated mechanical ventilation, adaptive support ventilation (ASV), to another group of 684 managed by usual, non-automated mechanical ventilation (No ASV). The data was collected in a unique access database designed to collect data for assessment of mechanical ventilation outcomes in a small medical center ICU. Results: The length of ventilator stay was non-significant between both groups, (81.7 ± 35.2 hours) in the ASV group; vs. (94.1 ± 35.1 hours) in the No ASV. Percent mortality was significantly less in the ASV group, 8.6% compared to 27.3% in the No ASV. Conclusion: Automated ventilation appears to be a safe ventilator strategy; however, cause effect relationships cannot be determined without further, more sophisticated studies. Keywords: Closed loop ventilation, ASV, Ventilator length of stay, Percent minute ventilation


2017 ◽  
Vol 1 (1) ◽  
pp. 8-12
Author(s):  
L.K. Rajbanshi ◽  
M. Dali ◽  
S.B. Karki ◽  
K. Khanal ◽  
B. Aryal ◽  
...  

Introduction Adaptive support ventilation (ASV) is a close loop dual control mechanical ventilation mode. This mode can automatically change its parameters to weaning mode once the patient is actively breathing converting volume targeted pressure control mode to volume targeted pressure support mode. We aimed to observe the outcome of the patients ventilated with ASV as a sole mode in terms of duration of mechanical ventilation, duration of weaning from the ventilatory support and length of Intensive care unit (ICU) stay.Methodology We conducted a prospective observational study for the duration of six months (Sept 2015 to Feb 2016) to assess the clinical outcome of the patients ventilated by ASV as a sole mode of ventilation. The study conducted observation of 78 patients without chronic respiratory, renal, hepatic and neurological disease who were admitted in our intensive care unit for invasive ventilatory support.Results Out of the 187 patients who required invasive and noninvasive ventilation, only 78 patients fulfilled the criteria to be included in the study. It was observed that the mean duration of mechanical ventilation was 5.4 days while weaning as well as tracheal extubation was successful within 13 hours of initiation of weaning. The mean duration of ICU stay was found to be 6.3 days.Conclusion We concluded that the patient ventilated by ASV mode were effectively weaned without the need of changing the ventilator mode. However, the safety of ASV mode needs to be established by large randomized control trail in a wide spectrum of patients.Birat Journal of Health Sciences 2016 1(1): 8-12


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Eduardo Mireles-Cabodevila ◽  
Enrique Diaz-Guzman ◽  
Alejandro C. Arroliga ◽  
Robert L. Chatburn

Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes). Two examples are adaptive support ventilation (ASV) and mid-frequency ventilation (MFV). We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios.Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings.Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes.Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.


2009 ◽  
Vol 110 (3) ◽  
pp. 620-627 ◽  
Author(s):  
Samir Jaber ◽  
Mustapha Sebbane ◽  
Daniel Verzilli ◽  
Stefan Matecki ◽  
Marc Wysocki ◽  
...  

Background Dual-control modes of ventilation adapt the pressure delivery to keep a volume target in response to changes in respiratory mechanics, but they may respond poorly to changes in ventilatory demand. Adaptive support ventilation (ASV), a complex minute volume-targeted pressure-regulated ventilation, was compared to adaptive pressure ventilation (APV), a dual-mode in which the pressure level is adjusted to deliver a preset tidal volume, and to pressure support ventilation (PSV) when facing an increase in ventilatory demand. Methods A total of 14 intensive care unit patients being weaned off mechanical ventilation were included in this randomized crossover study. The effect of adding a heat-and-moisture exchanger to augment circuit dead space was assessed with a same fixed level of ASV, PSV, and APV. Results Arterial blood gases, ventilator response, and patient respiratory effort parameters were evaluated at the end of the six periods. Adding dead space significantly increased minute ventilation and PaCO2 values with the three modes. Indexes of respiratory effort (pressure-time index of respiratory muscles and work of breathing) increased with all ventilatory modes after dead-space augmentation. This increase was significantly greater with APV than with PSV or ASV (P < 0.05). The assistance delivered during APV decreased significantly with dead-space from 12.7 +/- 2.6 to 6.7 +/- 1.4 cm H2O, whereas no change occurred with ASV and PSV. Conclusions ASV and PSV behaved differently but ended up with similar pressure level facing acute changes in ventilatory demand, by contrast to APV (a simple volume-guaranteed pressure-control mode), in which an increase in ventilatory demand results in a decrease in the pressure support provided by the ventilator.


Author(s):  
Amelia A. Lowell

The main goal of mechanical ventilation is to unload the respiratory muscles to facilitate oxygenation and ventilation. This is accomplished by providing a minute ventilation (VE) (respiratory rate × tidal volume [VT]) that will result in adequate alveolar ventilation coupled with supplemental oxygen and a mean airway pressure that will result in adequate arterial oxygenation.


2019 ◽  
Vol 20 (23) ◽  
pp. 5848 ◽  
Author(s):  
Dai ◽  
Wu ◽  
Yang ◽  
Chang ◽  
Peng ◽  
...  

Adaptive support ventilation (ASV) is a closed-loop ventilation, which can make automatic adjustments in tidal volume (VT) and respiratory rate based on the minimal work of breathing. The purpose of this research was to study whether ASV can provide a protective ventilation pattern to decrease the risk of ventilator-induced lung injury in patients of acute respiratory distress syndrome (ARDS). In the clinical study, 15 ARDS patients were randomly allocated to an ASV group or a pressure-control ventilation (PCV) group. There was no significant difference in the mortality rate and respiratory parameters between these two groups, suggesting the feasible use of ASV in ARDS. In animal experiments of 18 piglets, the ASV group had a lower alveolar strain compared with the volume-control ventilation (VCV) group. The ASV group exhibited less lung injury and greater alveolar fluid clearance compared with the VCV group. Tissue analysis showed lower expression of matrix metalloproteinase 9 and higher expression of claudin-4 and occludin in the ASV group than in the VCV group. In conclusion, the ASV mode is capable of providing ventilation pattern fitting into the lung-protecting strategy; this study suggests that ASV mode may effectively reduce the risk or severity of ventilator-associated lung injury in animal models.


2021 ◽  
Vol 2 (1) ◽  
pp. 34-44
Author(s):  
Denise Wheatley ◽  
Krystal Young

Ventilators functions and features have evolved with the advancement of technology along with the addition of microprocessors. It is important to understand and examine the benefits and risks associated with these advanced automated modes. Adaptive Support Ventilation (ASV) is a mode that is unique to the Hamilton Medical ventilators, thereby limiting the number of clinicians who have experience with using this mode. ASV can make changes to respiratory rate and tidal volume and adjusting the driving pressure in the absence of a professional. ASV changes ventilator strategies when it detects changes to a patient’s lung dynamics. The scope of ASV mode is not universally understood. Respiratory therapists may feel their position would be threatened with the use of smart automated modes. This paper will aim to review the literature on the ASV mode of ventilation. The literature review will address the following research questions to broaden the understanding of the risks and benefits of the ASV mode. 1) Is the ASV mode effective for weaning patients? 2) Is ASV a safe mode of ventilation for patients with COPD and ARDS? 3) Is ASV a safe mode of ventilation with changes in lung dynamics? 4) Does ASV impact the bedside respiratory therapist? Conclusions: ASV appears to be at least effective or even more superior to other modes especially during weaning off mechanical ventilation, and in other forms of respiratory failure. More studies in different clinical conditions and head-to-head with other modes. Keywords: ASV, COPD, ARDS, Weaning


Sign in / Sign up

Export Citation Format

Share Document