ventilation pattern
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

Author(s):  
Bharat Soni ◽  
Ameeya K. Nayak ◽  
Antonio Miguel

Abstract Studies suggest that both the size of airways and the number of bifurcations of the respiratory tree provide the best structural design to accomplish its function. However, constrictions and occlusions due to inflammation and pulmonary edema of the airways can inhibit normal air flowing through the respiratory tree, affecting gas exchange. It results in heterogeneity in gas exchange (and pulmonary perfusion) with adverse risk factors. In this study, we propose a methodology based on the airway tree admittance (reciprocal of impedance) to study this problem. This methodology is distinct from the traditional quantification, based on overall impedance using lump parameter models, and applies to a matrix formed by admittances of each airway of the entire conducting part of the bronchial tree. The generated system admittance matrix is highly sparse in nature, and thus to solve the same system, a modified block-based LU decomposition method is proposed to improve the space-time trade-off. Our approach enables the determination of the local ventilation pattern and reduces the mis-evaluation, mainly in the cases that characterize the early-stage obstructive disorders. The key finding of the present study is to show that how the position and intensity of local obstruction in an airway can affect the overall as well as regional ventilation which can lead to impaired gas exchange.


2020 ◽  
Vol 40 (4) ◽  
pp. 251-261
Author(s):  
Triya Damayanti ◽  
Sri Pudyastuti

Asthma in pregnancy can influence clinical status of an asthma patient. Study showed that one third of asthma patients were worsening, one third stable and one third improving. During pregnancy, lung function, ventilation pattern and gas diffusion are influenced by biochemistry (hormonal) and mechanic. Mechanism in pregnancy with asthma including hypoxia, inflammation, corticosteroids therapy, history of exacerbation, smoking mother and changes in placenta function. Hormonal status during pregnancy is different with non-pregnancy woman which hormonal level changes through the pregnancy time. Those changes can influence lung function in pregnancy. Treatment of asthma in pregnancy is giving optimal asthma therapy, therefore it can improve asthma control, also the quality of life of a mother and her fetus during pregnancy.


2019 ◽  
Vol 41 (02) ◽  
pp. 69-74 ◽  
Author(s):  
Yoann Garnier ◽  
Romuald Lepers ◽  
Hervé Assadi ◽  
Christos Paizis

AbstractOxygen uptake (V̇O2), heart rate (HR), energy cost (EC) and oxygen pulse are lower during downhill compared to level or uphill locomotion. However, a change in oxygen pulse and EC during prolonged grade exercise is not well documented. This study investigated changes in cardiorespiratory responses and EC during 45-min grade exercises. Nine male healthy volunteers randomly ran at 75% HR reserve during 45-min exercise in a level (+1%), uphill (+15%) or downhill (−15%) condition. V̇O2 , minute ventilation (V̇E ) and end-tidal carbon dioxide (PetCO2) were recorded continuously with 5-min averaging between the 10th and 15th min (T1) and 40th and 45th min (T2). For a similar HR (157±3 bpm), V̇O2 , V̇E , and PetCO2 were lower during downhill compared to level and uphill conditions (p<0.01). V̇O2 and V̇E decreased similarly from T1 to T2 for all conditions (all p<0.01), while PetCO2 decreased only for the downhill condition (p<0.001). Uphill exercise required greater EC compared to level and downhill exercises. EC decreased only during the uphill condition between T1 and T2 (p<0.01). The lowest V̇O2 and EC during downhill exercise compared to uphill and level exercises suggests the involvement of passive elastic structures in force production during downhill. The lower cardiorespiratory response and the reduction in PetCO2 during downhill running exercise, while EC remained constant, suggests an overdrive ventilation pattern likely due to a greater stimulation of efferent neural factors.


2019 ◽  
Vol 20 (23) ◽  
pp. 5848 ◽  
Author(s):  
Dai ◽  
Wu ◽  
Yang ◽  
Chang ◽  
Peng ◽  
...  

Adaptive support ventilation (ASV) is a closed-loop ventilation, which can make automatic adjustments in tidal volume (VT) and respiratory rate based on the minimal work of breathing. The purpose of this research was to study whether ASV can provide a protective ventilation pattern to decrease the risk of ventilator-induced lung injury in patients of acute respiratory distress syndrome (ARDS). In the clinical study, 15 ARDS patients were randomly allocated to an ASV group or a pressure-control ventilation (PCV) group. There was no significant difference in the mortality rate and respiratory parameters between these two groups, suggesting the feasible use of ASV in ARDS. In animal experiments of 18 piglets, the ASV group had a lower alveolar strain compared with the volume-control ventilation (VCV) group. The ASV group exhibited less lung injury and greater alveolar fluid clearance compared with the VCV group. Tissue analysis showed lower expression of matrix metalloproteinase 9 and higher expression of claudin-4 and occludin in the ASV group than in the VCV group. In conclusion, the ASV mode is capable of providing ventilation pattern fitting into the lung-protecting strategy; this study suggests that ASV mode may effectively reduce the risk or severity of ventilator-associated lung injury in animal models.


2019 ◽  
Vol 8 (5) ◽  
pp. 724 ◽  
Author(s):  
Per Olav Berve ◽  
Unai Irusta ◽  
Jo Kramer-Johansen ◽  
Tore Skålhegg ◽  
Håvard Wahl Kongsgård ◽  
...  

Compressions during the insufflation phase of ventilations may cause severe pulmonary injury during cardiopulmonary resuscitation (CPR). Transthoracic impedance (TTI) could be used to evaluate how chest compressions are aligned with ventilations if the insufflation phase could be identified in the TTI waveform without chest compression artifacts. Therefore, the aim of this study was to determine whether and how the insufflation phase could be precisely identified during TTI. We synchronously measured TTI and airway pressure (Paw) in 21 consenting anaesthetised patients, TTI through the defibrillator pads and Paw by connecting the monitor-defibrillator’s pressure-line to the endotracheal tube filter. Volume control mode with seventeen different settings were used (5–10 ventilations/setting): Six volumes (150–800 mL) with 12 min−1 frequency, four frequencies (10, 12, 22 and 30 min−1) with 400 mL volume, and seven inspiratory times (0.5–3.5 s ) with 400 mL/10 min−1 volume/frequency. Median time differences (quartile range) between timing of expiration onset in the Paw-line (PawEO) and the TTI peak and TTI maximum downslope were measured. TTI peak and PawEO time difference was 579 (432–723) m s for 12 min−1, independent of volume, with a negative relation to frequency, and it increased linearly with inspiratory time (slope 0.47, R 2 = 0.72). PawEO and TTI maximum downslope time difference was between −69 and 84 m s for any ventilation setting (time aligned). It was independent ( R 2 < 0.01) of volume, frequency and inspiratory time, with global median values of −47 (−153–65) m s , −40 (−168–68) m s and 20 (−93–128) m s , for varying volume, frequency and inspiratory time, respectively. The TTI peak is not aligned with the start of exhalation, but the TTI maximum downslope is. This knowledge could help with identifying the ideal ventilation pattern during CPR.


Animals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 203
Author(s):  
Yijie Xiong ◽  
Richard Gates ◽  
Angela Green-Miller

Extreme weather conditions challenge pig thermoregulation during transport and are addressed by the National Pork Board (NPB) Transport Quality Assurance® (TQA) program that provides guidelines for trailer boarding, bedding, and misting. These guidelines are widely applied, yet very little is known about the microenvironment within the trailer. In this study, TQA guidelines (V4) were evaluated via extensive thermal environment measurements during transport in order to evaluate spatial variability and implications on ventilation pattern. Effects of trailer management strategies including bedding, boarding, and misting were examined and the trailer was monitored for interior temperature rise and THI responses within six separate zones. The trailer thermal environment was not uniformly distributed in the colder trips with the top front and bottom zones were the warmest, indicating these zones had the majority of outlet openings and experienced air with accumulated sensible and latent heat of the pigs. Relatively enhanced thermal environment uniformity was observed during hot trips, suggesting that ventilation patterns and ventilation rate were different for colder vs. warmer weather conditions. Misting applied prior to transport cooled interior air temperature, but also created high THI conditions in some cases. Neither boarding and bedding combinations in the TQA nor boarding position showed impacts on trailer interior temperature rise or spatial distribution of temperature inside the trailer.


Sign in / Sign up

Export Citation Format

Share Document