The Effect of Organic Materials Application on Soil Chemical Properties and Yield of Corn in Organic Upland Soil

2020 ◽  
Vol 29 (12) ◽  
pp. 1239-1248
Author(s):  
Minjae Kong ◽  
Philgyun An ◽  
Junga Jung ◽  
Chorong Lee ◽  
Sangmin Lee ◽  
...  
Author(s):  
Fahamida Akter ◽  
Md. Mizanur Rahman ◽  
Md. Ashraful Alam

Organic fertilizers are enriched in plant nutrients which may enhance the soil chemical properties. However, studies on the effect of long term fertilization on soil chemical attributes is yet lacking in Bangladesh. Therefore, an experiment was conducted to assess the changes of soil chemical properties as influenced by long term manuring and nitrogen fertilizer in silt clay loam soil under rice-wheat cropping system. The experimental plot received different organic materials for the last 26 years (1988-2014). Five types of organic materials treatments such as control (no manure), cowdung, compost, green manure and rice straw were applied at the rate of 0, 25, 25, 7.5 and 1.5 t ha-1, respectively in a yearly sequence. Three levels of nitrogen viz. 0, 75 and 100 kg ha-1 for rice and 0, 80 and 120 kg ha-1 for wheat were applied in this study. Long term application of different organic materials positively increased soil organic carbon and total N, P, S and decreased pH and K, Ca and Mg availability. Increase in soil organic carbon was found maximum under green manure and lowest in rice straw applied soil. The green manure contributed to the maximum accumulation of soil nitrogen. N dose of 80 kg ha-1 was found effective in increasing availability of soil nutrients.


2020 ◽  
Vol 112 (5) ◽  
pp. 4395-4406
Author(s):  
Maysoon M. Mikha ◽  
Gary W. Hergert ◽  
Xin Qiao ◽  
Bijesh Maharjan

2008 ◽  
Vol 37 (S5) ◽  
pp. S-8-S-24 ◽  
Author(s):  
Dennis L. Corwin ◽  
Scott M. Lesch ◽  
James D. Oster ◽  
Stephen R. Kaffka

Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 571
Author(s):  
Willy Irakoze ◽  
Hermann Prodjinoto ◽  
Séverin Nijimbere ◽  
Jean Berchmans Bizimana ◽  
Joseph Bigirimana ◽  
...  

Salinity may strongly influence the interaction between plant roots and surrounding soil, but this has been poorly studied for sodium sulfate (Na2SO4). The aim of this study was to investigate the effect of sodium chloride (NaCl) and Na2SO4 salinities on the soil chemical properties as well as rice physiological- and yield-related parameters of two contrasted cultivars (V14 (salt-sensitive) and Pokkali (salt-resistant)). Pot experiments were conducted using soil and electrolyte solutions, namely NaCl and Na2SO4, inducing two electrical conductivity levels (EC: 5 or 10 dS m−1) of the soil solutions. The control treatment was water with salt-free tap water. Our results showed that soil pH increased under Na2SO4 salinity, while soil EC increased as the level of saline stress increased. Salinity induced an increase in Na+ concentrations on solid soil complex and in soil solution. NaCl reduced the stomatal density in salt-sensitive cultivar. The total protein contents in rice grain were higher in V14 than in Pokkali cultivar. Saline stress significantly affected all yield-related parameters and NaCl was more toxic than Na2SO4 for most of the studied parameters. Pokkali exhibited a higher tolerance to saline stress than V14, whatever the considered type of salt. It is concluded that different types of salts differently influence soil properties and plant responses and that those differences partly depend on the salt-resistance level of the considered cultivar.


Sign in / Sign up

Export Citation Format

Share Document