Zooplankton Removal in Seawater using UV, Electrolysis and UV+electrolysis Process

2021 ◽  
Vol 30 (7) ◽  
pp. 597-604
Author(s):  
Dong-Seog Kim ◽  
Young-Seek Park
Keyword(s):  
Author(s):  
Chen-hua Xu ◽  
Jin-zhi Zhang ◽  
Ruo-jun Cheng ◽  
Rui Chen ◽  
Zhu-guang Luo ◽  
...  

2018 ◽  
Vol 1 (2) ◽  
pp. 9-14
Author(s):  
Marisol Cervantes-Bobadilla ◽  
Ricardo Fabricio Escobar Jiménez ◽  
José Francisco Gómez Aguilar ◽  
Tomas Emmanuel Higareda Pliego ◽  
Alberto Armando Alvares Gallegos

In this research, an alkaline water electrolysis process is modelled. The electrochemical electrolysis is carried out in an electrolyzer composed of 12 series-connected steel cells with a solution 30% wt of potassium hydroxide. The electrolysis process model was developed using a nonlinear identification technique based on the Hammerstein structure. This structure consists of a nonlinear static block and a linear dynamic block. In this work, the nonlinear static function is modelled by a polynomial approximation equation, and the linear dynamic is modelled using the ARX structure. To control the current feed to the electrolyzer an unconstraint predictive controller was implemented, once the unconstrained MPC was simulated, some restrictions are proposed to design a constrained MPC (CMPC). The CMPC aim is to reduce the electrolyzer's energy consumption (power supply current). Simulation results showed the advantages of using the CMPC since the energy (current) overshoots are avoided.


2021 ◽  
pp. 2427-2433
Author(s):  
Saket S. Bhargava ◽  
Daniel Azmoodeh ◽  
Xinyi Chen ◽  
Emiliana R. Cofell ◽  
Anne Marie Esposito ◽  
...  

2021 ◽  
Vol 668 (1) ◽  
pp. 012085
Author(s):  
Jiayu Tian ◽  
Haifeng Wang ◽  
Xiaoyu You ◽  
Xiaoliang Cheng ◽  
Jiawei Wang
Keyword(s):  

2019 ◽  
Vol 91 (1) ◽  
pp. 2687-2696
Author(s):  
Evangelia Ioannidou ◽  
Stylianos G. Neophytides ◽  
Dimitrios K. Niakolas

SainETIn ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 59-68
Author(s):  
Rido Rahmadani

The chlor-alkali process is an electrolysis process which plays an important role in the chemical industry such as the pulp industry. The process produces a product in the form of H2 gas, CL2 gas and NaOH (where the source of chloride ion used is NaCl). This electrolysis process requires a dirrect current with a large current  and a low voltage. In this electrolysis process a three phase controlled 12 pulse rectifiers are used which a connected with multi-winding transformers. In the rectifiers process there will be harmonic distortion on the source side of the transformer which can reduce the power quality of the system. To overcome the harmonic problems that occur in the system, an installation analysis of the equipment in the form of a passive single tuned  filter is aimed at reducing harmonic distortion of current and voltage and increasing the power factor (cos φ). From the result of harmonic analysis using ETAP software, after the installation of harmonic filters orde 11, 13 and 23, the harmonic current value (THDI) and harmonic voltage (THDV) has decreased, namely, before the filter installation, THDI value is 6,5% whereas after installation of filters, THDI value becomes 0,98%, thus there is a THDI decrease of 5,52%. Furthermore, for the voltage harmonic value (THDV) before filter installation is 1,48% while after filtering, THDV value becomes 0,26%, thus there is a THDV decrease of 1,22%. From the results of the simulation of the flow of power (load flow analysis), after installation of filters there is an increase in the value of the power factor (cos φ). Namely, before the filter installation, the value of power factor (cos φ) is 0,8 while after the filter installation the value of the power factor (cos φ) to 0,96, thus an increase in the power factor (cos φ) of 16%.   Keywords : harmonic filter, single tuned filter, power factor, transformer rectifier


Sign in / Sign up

Export Citation Format

Share Document